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THE EXPONENTIAL MAP FOR THE LAGRANGE PROBLEM
ON DIFFERENTIABLE MANIFOLDS

By C.B. RAYNER?

Mathematics Division, University of Sussex

(Communicated by H. Bondi, IF.R.S.—Received 15 June 1966)

A parabolic space P = P (M, H, a) is defined as a C* manifold M, a sub-bundle H of the tangent
bundle T of M and a C® symmetric, bilinear function ¢: H® H - R which induces a positive-definite
quadratic form on each fibre of H. A path ¢ — f(¢) in M is called horizontal if its tangent vector f ()
is everywhere in H. The Lagrange problem considered is that of finding, in the set Q(P, Q) of
piecewise C! horizontal paths in M which join fixed points P, @, a path f; which minimizes the
integral [a( F(O)®F () dt. Such an f; is called a geodesic arc. For each x € M there is an exponential
map ¢,: T% - M of the set of covectors at x into M such that, for y € T%, ¢t - ¢,(ty) is geodesic, and
also ¢,(N¥) = {x}. Here, N* ¢ T* is defined by the exact sequence
0> N*->T%* > H->0;

the epimorphism 7% -+ H being given by y - 7, where y(0) = a(o ® 7,), o € H. The behaviour
of e, near N} is studied and the following theorems are proved under the hypothesis (4) that, for
every nonzero local section p of N* (a 1-form on M), du has maximal rank: (1) there is a neigh-
bourhood U, of the origin O, of T# such that ¢,|U,\N¥ is diffeomorphic, (2) for every C3 horizontal
path f: R — M such that f(0) = x, there exists ¢ > 0 such that f|(—¢, €) can be factorized in the
form ¢, f,, where £,(0) = O, and £,(0) exists and is not tangential to N*. The method of proof is to
show (without hypothesis (4)) that & determines canonically a parabolic structure #(M’, H’, a’)
on M’ = H,® N, such that (primes being used for 2 and x being identified with the zero of
H,® N,) ¢ is a first approximation to ¢, near N;* &~ N} when ¢, ¢, are compared in suitable charts.
The geodesic properties of #” are readily computed and they lead to theorem (1) relative to 2. The
theorem ¢, ~ ¢, then allows this result to be carried over into &. The approximate location of the
set ¢,(U,) is found in terms of a chart and it is proved that, for a path fas in (2), f~1¢,(U,) is open.
This, after further analysis, yields (2). In the course of the paper variousrelated results are established.
In particular, it is proved (3) without assumptions of normality that a sufficiently short geodesic
arc is shorter than any other horizontal arc joining its end-points, (4) that, in a complete space &,
every pair of points P, @ for which Q(P, @) is not empty can be joined by a minimizing geodesic arc.
Theorems (1) and (2) imply that a C3 horizontal path f can be approximated by a geodesic polygon
p,which is homotopic to by a standard homotopy of Morse theory. (No positive lower bound for the
lengths of the sides of p, is given—this would be a functional of the curvature of f.) As far as
practicable, intrinsic notations are employed.

+ Now at the University of Southampton.
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300 C. B. RAYNER

INTRODUCTION

This paper was written in the hope that it might contribute to the application of Morse
theory to the fixed end-point problem of Lagrange in the calculus of variations. For our
purposes the latter may be described as follows. Let () = Q(P, @) denote the set of piecewise
C'pathsf: [0,1] = M joining Pto @ in a C* manifold M, where each fsatisfies side conditions

the g being 1-forms on M. Let T be the tangent bundle of A and F: 7— R" a function for
1 .

which F(ly) = |A| F(y), e R. The problem is to find an f,e { for which f F(f(t)dtis
0

minimized by f = f,. Such an f, will be called a geodesic arc. The main results which we
shall prove (§§7, 8) have, for their nearest analogue in Riemannian geometry, the theorem
that each point a of a Riemannian manifold possesses a normal neighbourhood. Whereas,
in Riemannian geometry, this result is an easy consequence of the non-singular character of
the exponential map near the origin, here we have to deal with an exponential map which is
singular—the type of degeneracy varying with the degree of non-integrability of the side
conditions (1).T To simplify the problem, we suppose the function F to be (essentially)
a Riemannian metric and the side conditions to be usually such that each g* has its exterior
derivative of maximal rank.

Recall that, in applying Morse theory to the geodesics of a Riemannian manifold M, one
assumes without loss that the paths of () are parametrized proportionally to arc length and
approximates to each fe {2 by a geodesic polygon which is homotopic to fin a standard way
(Milnor 1963). The existence of such a homotopy arises from the possibility of factorizing

Jlocally through the exponential map, i.e. there exists an ¢> 0, independent of £, such that
fl(t—el=t, t-Fel~Y) = ¢, f,, where [is the length of fand ¢,is the exponential map at x. It will
be proved (theorem 8-1) that such a factorization, in which ¢ now depends on f, can be
carried out for the Lagrange problem. The reason for the dependence of ¢ on f here is that,
if f were highly curved, its image could contain pairs of conjugate points arbitrarily close to
each other, and an approximating geodesic polygon would have to possess a large number
of sides in order to prevent some of them from being non-minimizing. The f~dependence of
¢ in the Lagrange problem might seem to rule out the possibility of applying Morse theory;
however, in the author’s view there are still grounds for optimism, since one can reason on
the subset of Q consisting of paths for which ¢ exceeds a fixed number.

Asregards the formulation of the Lagrange problem, observe that, if # were a Riemannian
metric, it would bring in redundant structure, because we are not interested in the lengths of
paths which do not satisfy (1). It is not hard to see that a non-redundant structure is
furnished by an epimorphism a: 7% — H of the cotangent bundle of M onto a sub-bundle
H of the tangent bundle. The kernel, N*, of a is then spanned locally by the 4*’s while, for
any 7e H, we have F(r) = /7(7), where ¥e a~!(7)—the choice of ¥ being immaterial. Our
object for study will therefore be the structure defined by an exact sequence

0>N*>T*5Hs0, HcT, (2)

1 If the Pfaffian system (1) is completely integrable, there is a foliation of M by Riemannian submanifolds
of dimension m, and the set Q(P, Q) may be empty. We are not concerned with this case.


http://rsta.royalsocietypublishing.org/

/.
/ B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE LAGRANGE PROBLEM ON DIFFERENTIABLE MANIFOLDS 301

together with certain hypotheses about rank, etc. This will be called a parabolic structure
2 (M, H,a) on M because the map a is a singular contravariant tensor a” for which the
associated partial differential equation a¥ 9%/ dx? dx/ = 0 is parabolic. M, with this structure,
will be called a parabolic space. An example of a parabolic space is a fibre bundle M over a
Riemannian space B, together with a connexion on M. The conditions (1) are satisfied by
a path in M if it is horizontal, and the length of a horizontal path is that of its projection
into B.

As already mentioned, the exponential map ¢, T -~ M (T7¥ = fibre over xe M) for
P (M, H,a) is singular, the ‘kernel’, N¥ < T7¥f mapping onto x under ¢,. The central idea
of this paper, which is developed in §§ 5, 6 and 7, is that & (M, H, a) determines canonically
a parabolic structure #’ on the vector space H, @ N, such that (primes being used for 2’)
N¥ is the kernel for ¢;: T7%(=Hf ® N¥) — H,® N, and, when coordinates are properly
chosen, ¢, gives a first approximation to ¢, near Ni. The structure 2’ has geodesic properties
which are readily computed (§8 3, 4). Some of these properties, being true of a wider class
of spaces, are proved in § 3. The main conclusion of § 4 is that there is a neighbourhood U
of the origin in 77* such that ;| U\ N¥ is diffeomorphic. The theorem ¢,~ ¢;, proved in
§ 6, then allows this result to be carried over unchanged into 2 (§7). The approximate
location of the set ¢,(U,) is found (§ 7) in terms of a chart and, in § 8, we show that, for every
horizontal path f (i.e. satisfying (1)) through x, f~le(U,) is open—whence f factorizes
locally in the formee, f.,where,if x = £(2), f(¢) is the zero element of 7. The tangent vector
g,(t) = £,(t) can be identified with a point of 7¥, so the map ¢ ¢,(¢) gives a ‘canonical lift’
(theorem 8-2) of finto T7f. Crudely, this says that any C? horizontal path carries a set of
Lagrange multipliers with which f satisfies the multiplier rule in case f'is geodesic. These
multipliers become large if fis highly curved. Finally, in § 8 a “parabolic’ version of covariant
differentiation is given, for which scalar products are conserved under parallel translation.
Geodesics are autoparallels, but not always vice versa.

Non-holonomic spaces, namely Riemannian or Finsler spaces carrying non-integrable
Pfaffian systems, have been considered by Cartan (1953 ), Synge (1926), Rund (1954) and
Vranceanu (1958) from a different point of view. Because of dynamical applications, Synge
and Rund were mainly interested in what Synge calls constrained geodesics; these are the
autoparallels of this paper (§8). A recent paper of Hermann (1962) is more closely related
to this one, and we quote one of his results (proposition 2-7). Hermann’s approach, however,
is Lagrangian, whereas ours is Hamiltonian. They are locally equivalent, but ours seems
more natural—the scene of most activity being 7% rather than 7" x R»—™,

1. DEFINITIONS AND NOTATION

Let X be a manifold; that is, connected, paracompact, C*, of finite dimension without
boundary. An m-dimensional Pfaffian system (0 < m < dim X) on X will be a sub-bundle HX
(we do not distinguish notationally between a bundle and the bundle space) of the tangent
bundle TX of X, where the fibre has dimension m. The cotangent bundle of X will be
denoted by T*X. An epimorphism «: T*X — HX will be called definite if y o wz(y) > 0 for
all ye 7%X and further y o w(y) = 0 implies ye kera, where ¢: HX < TX. We term « sym-
metric if y, 0 w(y,) = y, 0w (y,) whenever my, = my,, m: T*X — X being the projection.

38-2
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302 C. B. RAYNER

DEFINITION 1-1. A parabolic space, 7 (M, H, a), is a manifold M, a Pfaffian system HM and
a C», definite, symmetric epimorphism a: T*M — HM.

NotaTion 1-1. For any xe X, we write 7, X, H, X, etc. for the fibre over x. We think of M
as a fixed manifold and abbreviate 7X, NX, ... to T, H, ..., respectively, whenever X = M.
For example, TH, will denote the tangent bundle of the vector space H, = H,M. The
symbols 7, ¢ (usually with diacritical marks) will always denote projection and inclusion
maps respectively; their significance will not, therefore, be normally explained. In parti-
cular 7 unadorned will mean 7°* - M throughout. The number 3-14...will be written II.
Inclusion maps will often be omitted. A vector re TX will be termed horizontal (on X) if
re HX. We write N* = kera and term ge T* or de TT* null if pe N* or if 1 (e TT¥) is the
translate of a vector A'e TN¥, some xe M. 75X (or 77 if X = M) will denote the set of C*
sections in tensor bundles of type (7, s) over X, r and/or s being omitted when zero. The set
of C» sections M — N* will be denoted by A7 If V < M, we call pm*1, ..., yre /" a basis for
Ny A g Ua .. A pt vanishes nowhere on V. If f: X — Y'is CY, f.: TX — TY will denote the
induced tangent map, and f* its transpose. For any map f, f(x) will sometimes be written
fl,; for example, if le # |, 7e #1, we have A(1) e Z and A(7)], denotes its value at xe M. Also,
S| U will denote the restriction of fto U, and if I"is a fibre bundle over X, F|, will denote the
fibre over x. If Vis a vector bundle and e R, we write A: V — V, v — Av. If 4 is a vector space
and u, ve 4, then v determines canonically a constant tangent field 4, on 4. We term v, 7|,
(and also v, 9) isomorphs of each other. Except where indicated otherwise, Latin suffixes will
range from 1 to n(= dim M) and suffixes «,f, ..., ¢ from 1 to m, while «, 4, ..., ¢ will range
from m-+1 to n. The summation convention will be observed when a suffix occurs twice,
once raised, once lowered. For a p-form o and a vector field 1 we denote by i[A]« the (p—1)-
form with components (i[]«);, ... ;, = /' ¢;, .. ;,- The Lie derivative of & with respect to A is
given by the Lichnerowicz formula

[N = i[A]do-+di[A] e (1-1)

A circle or full stop will sometimes be used, asin ao b or r.s to indicate that @ operates on b,
or r multiplies s(r,se R), if these marks are thought to be helpful. Any le #! defines a
pseudogroup ¢, of transformations of M, and hence, by differentiation, pseudogroups ¢,
and ¢*, of T, T*, respectively, for which n'¢,,, = ¢, 7", n¢*, = ¢,n, ' T — M. The vector
fields on 7, T* which generate ¢, ¢* will be called (following Hermann) the first-order
prolongations of X on T, T*. The interval [0,1] will be denoted by I. Let S = R and let
f18 = Xbe C° piecewise C'; we call fa path if § is a finite, closed interval, or a curve if S is a
finite or infinite open interval. If S == I we call fa unit path, and if fis a C! path whose tangent
vector f(t) never vanishes we call f an arc. If f(t)e H for all ¢, f will be described as horizontal
and horizontal paths, arcs and curves will be called H-paths, H-arcs and H-curves,
respectively.

If y,,y,e T, some xe M, we call a(y,,y,) = a(y,,y,) e y,0a(y,) the scalar product of y,
and y,. Again, if 7, 7,€ H,, xe M, then 7, = a(y;), some y;e T, 1= 1,2, and we call

de
a(7y,7,) = a(yy,9s)
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the scalar product of 7,,7,. For re T# or re H, we write |7| = Ja(r,7). For any H-path
f:[b,¢c] = M, we define

L =[ 1@t (g=1,2) (12)

calling J, (f), Jo( f) the length and energy of f, respectively. If U(open) = M, and if (;, Q,are
the set of H-paths, unit H-paths, respectively, in U which join P, Qe U, we say that f mini-
mizes J, in Q, if fe Q, and J,( f) < J, (k) for all ke (). In the cases where U, f have this
property (1) for some U, (2) for U= M, we call f relatively minimizing for J,, (absolutely)
minimizing for J,, respectively.

ProrosiTioN 1-1. For any fe Q,, J,(f) = {J,(f)}? equality holding if and only if f is
parametrized proportionally to arc length Consequently, if an arc f; minimizes J| in Q,,
the unique f,e £, obtained by parametrizing f; proportionally to arc length, minimizes J,
in Q,. Conversely, if f minimizes J, in €, it minimizes J; in €),.

Proof. The first statement follows from Schwarz’s inequality (Milnor, p. 70). To prove
the last statement observe that fis necessarily parametrized by arc length, so that

S(f) =N =8, say.
Suppose there exists e £, such that J,( f’) = I’ < /. Without loss, assume f"e Q,. If te ['is
the parameter for f”, let s(¢) denote arc length for f* measured from ¢ = 0, and define a new
parameter 7 by
(l'4e)7=s(t)+et (2e=I-10").

Let f" now be referred to this new parameter. We have

Jo(f) f (3&) dr = (I'+ f{‘ §}2d”

< (1’+e)f S () dt = (I +¢) < (),

0
contrary to hypothesis.

If f minimizes J; in €,, fadmits a representation as a C! arc with arc length as parameter
(see the last paragraph of the proof of proposition 2-15). When this result is combined with
proposition 1-1, one sees that the problems of minimizing J, in , for ¢ = 1, 2 are entirely
equivalent. In practice, we shall generally apply standard calculus of variations techniques
to J, rather than J|.

CoroLLARY 1-1. inf J,(f) = {d,(P, Q))2, where d,(P, Q) & inf J,(£).

SEQ SE€EQ2

DerintTION 1-2. The Pfaffian system H is locally horizontally connected (Lh.c.) if, given a
connected open set U = M and ¥, ye U, there exists an H-path in U joining ¥ to y.

ProrposiTiON 1-2. If His Lh.c. and g (5= 0) e A then gadu = 0.

Proof. If uadu = 0, y =£ 0, there is, by Frobenius’s theorem, an open V' < M and a ge FV
such that d¢ == 0, #|V == 0 and xad¢ = 0. Hence, if x, ye V and ¢(x) = ¢(y), no H-path in
V exists which joins x to y.

Denote by .# (N¥) the ideal generated by N in the graded algebra AT¥ of exterior forms
at x. Recall that m always denotes the dimension of the fibre of H.
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304 C. B. RAYNER

DerintTion 1-3. The Pfaffian system H has corank h (< m—write crk H = k) if & is the
largest even integer such that, for all xc M, the hypothesis ue #, and (du)*#|.e.7 (N¥)
implies |, = 0. In particular, crk H = m if and only if for all xe M,

pe N, 1e H,i[r]due N¥ implies 7=0 or pu|,=0.

The condition crk i/ =m is very restrictive and is analysed further in appendix 2. In
particular, if crk = m < n—1, we must have m = 0 (mod 4). The invariant crk A does not
seem to have got into print before, though it must have been known to E. Cartan, for
example. (A related invariant, given by the maximum r for which there exists ge 4" such
that (dx)"¢ .# (N,) was called by Cartan (1945, p. 107) the Engel invariant and by Vranceanu
(1957, 11, p. 219) the rank of the Pfafian system.)

RemARK 1-1. Because of the resulting economy in notation, we shall often assume a
Riemannian space under consideration to be complete. Local results (in particular, theorem
6:1) can, of course, be proved without this assumption.

2. (GEODESICS
Let U{x¥} be a coordinate neighbourhood of A4, with (J;) the natural frame dual to (dx?).
Fory =y,d¥, y' = y; dx/ e #, U, we have a(y,y’) = a¥y,y;, where a¥ = a(dx’, dx’). Again, if
q=4q0,q =q"%;e H, xe U, then a(q, ¢') = a; ¢'q"7, where a;;e # U is such that

ara,. a9 = av. (2-1)
Hence, for any H-path f: I — U, we have f(t) = fi(t) 4;, and
1 .
T(F) =] anf 0 J70S @) de. (22
If U is small enough there is a basis (#m*1, ..., u") for A7, so that f(¢) € H if and only if
W) =mf@). S (0) =0 (p=pda). (2-3)

These are the classical equations for the problem of minimizing J, in the set of unit H-paths
in U joining fixed end-points. If fis relatively minimizing for J,, then (Bliss 1963, pp. 207,
209) there exist ‘canonical variables’ p;: I/ — R such that the functions #if, p; satisty the
differential equations (multiplier rule)

du f(2)[dt = a? f(2) .p; (1),
dp;(£)[dt = —Fa,, (1) .p,(8) (D), (2-4)
where da¥ = a¥ , dx*. Inspection of the Weierstrass—-Erdmann corner condition (Bliss,
p. 203) shows that fhas no corners’ and is thus a C* H-arc (check that | f(t)] is constant and
therefore nonzero if f(0) == f(1)). One verifies that the p;(¢) are components of a covariant
vector at f(z).

DerINITION 2-1. Let o denote the fundamental 1-form of T*, given, for 7e T, T*, by
o(1) = y(me1). Define de F T* by A(y) = |y|2 The geodesic spray, © (e #1T%*), is defined by

2i[0] do = —d 4. (2-5)

By proposition 2-1 below, dw has maximal rank, so this definition is valid.
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THE LAGRANGE PROBLEM ON DIFFERENTIABLE MANIFOLDS 305
We have (Sternberg 1964, p. 199) for any ae R, a == 0,
% O=a! '®: Ty (®ly> = d(y) (2"6)
We state without proof the following basic properties of .

ProrosiTioN 2-1. The 1-form w on 7* is such that (dw)”|, # 0 for all ye T*, so that there

exists Qe #2T* for which Qodw = 1;7+. (In terms of , we have 20 = Qod4.) For any

o def . . . .
ve F,, 6 = Q(n*0) is a vertical vector field on T*, constant on each fibre, and isomorphic

to ¢ (notation 1-1). For any ge # T'*, ye T™* the following statements are true.

() 2@, = dgly+ion(y)lo (d=djds);

(i1) Z[0]w = 7%0;

(iii) ¢*w =0 (recall o: M — T%);

(iv) if 7" is the first order prolongation on T* of a vector field 7 on M, then Z[7']w = 0;

(v) if M is a vector space over R, then T* ~ M x M*. Let m, m,: T* — M, M*, respec-
tively, and let t,: 7M — M, t,: TM* — M* take tangent vectors to their isomorphs. Then,
for any ue 7%, o, 7 T, T*,

do(o,7) = (t,my0) 0 (t;m, 7) — (ty 7y 7) O (t, 7, 7).

DeriNTION 2-2. Let § < R and let A: §— T* be a ©-orbit (A(t) = @), for all teS). If
S is a finite or infinite open interval, 71 will be called a geodesic (of (M, H,a)). If Sis a
finite, closed interval and A(f) # 0, te S, 7A will be called a geodesic arc. If A(t) = 0, we
call 74 (a constant map) a null geodesic.

ProrosITION 2-2 (multiplier rule). A necessary condition for the H-path f: I M to be
relatively minimizing for J, is that it be a geodesic arc.

Proof. Cover imj by coordinate neighbourhoods U{xi}. If [b,¢] < f~1U, then f|[b,¢]
minimizes J, relatively in the set of H-paths [b, ¢] — U which join f(b) to f(¢), and therefore
satisfies (2-4). Now, the right-hand sides of (2-4) are just the components of ® (given by (2-5))
in terms of the canonical chart 7~ 'U{n*x,y,}, where y = y; dx/, evaluated at the point
pi(t) .dxf| ). Hence, the result.

ProrosiTion 2:3. The spray ® vanishes on N*.
Proof. The non-negative function 4 (definition 2-1) vanishes on N*, whence d4|N* = 0.
By (2-5) and because (dw)” # 0, we have ®|N* = 0.

CoOROLLARY 2-1. Any constant map R — M is a (null) geodesic.

DEerFINITION 2-3. A compatible Riemannian metric (c.R. metric) on M is a positive-definite
Riemannian metric g: T#* — 7 such that (with notation analogous to that for a) xe M, o,
re H, implies g(c,7) = a(o, 7). (¢g'|H is a splitting of the exact sequence (2).)

DeriniTION 2:4. Let f'be a geodesic; if fis also geodesic for a c.R. metric g on M, g will
be said to admit f. (A geodesic of g will be the projection of an orbit of (2:5) where A4 has
been replaced by the function y — g(y,y).)

ProrosiTioN 2-4. There exists a ¢.R. metric on M.
Proof. Let § be a Riemannian metric on AM; & determines, by orthogonality, a decom-
position 7'= H ® H*, with projections 7, m,. Let g(§,7) = a(m &, m n) +&(m €, my 7).
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A c.R. metric is thus the sum of parabolic ‘metrics’ associated with supplementary
Pfaffian systems H, H*.

ProposiTION 2-5. Let S (closed) = M and let g, be a c.R. metric on U (open), where
S <« U = M. Then there exists a ¢.R. metric g on M such that g|§ = g,.

Proof. Use a partition of unity argument, noting that, if g; (¢=1, ..., N) are c.R. metrics,
so is 2¢; g;, where {¢,} is a p.u.

ProrosiTION 2-6. Let f be a non-null geodesic arc without self-intersections. There exists
a c.R. metric on M which admits f. '

Proof. We have f = my, where y: I - T* is an embedding. Let & be a c¢.R. metric on M,
so that a0 g~!|H = 1. There exists U (open) < M (e.g. a tubular neighbourhood of im f)
and a C* section ¢ : U — T™* for which yf = y. Hence, using a suffix U to denote | U, we have
a decomposition 7§ = N, ® Ny, where N, = N3, N, = V'@ L, ¥, L being defined as follows.
Y (with fibre R) is the sub-bundle of 7% which contains im ¢, and L is the orthogonal
complement (relative to &) of N ® ¥ in TF. Let Ty, = H, @ H,, where H, = Hy;, be the de-
composition dual to Ny ® N,, and writen;: T% - N, nj: T, —~ H,, ¢ = 1,2. Set g = 1 gm,+a:
TH — Ty, Then g(v) = 0 implies a(v) = n{ g (v) = 0, whence ve N§, g (v)e Hy, so that
v = 0—g(N*)being supplementary to H. Thus, g is an isomorphism. Next, for any ce 7§,

cog(o) =cgomgnm(o)+ooa(o) = (ma)og(ma)+ooalr), (2-7)

which is non-negative, whence g is positive-definite. Now, g|N, = a|N,: N, ~ H,, so
ag™'|Hy = 1, and g is a c.R. metric on U. Again, by (2:7) and definition 2-1

G(0)—A(0) = a0 (g(0) —a(r)) = &(m 0,7 0) = 0,

where G(0) = g(0,0). Hence, since m;(¥) = 0, the non-negative function G—AeF T%
vanishes on ¥ and we have (dG—d4)|¥ = 0. Accordingly, by (2-5), 2i[®] dv = —dG at
all points ye imy. Thus, fis geodesic relative to g and the result follows from proposition 2-5.
From a known result of Riemannian geometry, we have

CoroLLARY 2:2. If f: (a,b) — M is a geodesic of Z (M, H, a), each te (a, b) has a neigh-
bourhood [t—e¢, t-+¢] for which the unit H-path s — f({—e-+2¢s) has smaller energy than
any other unit A-path joining its end-points.

DeriniTION 2-5. Let g be a ¢.R. metric on M. For any «x,ye M, d,(x,y) will be as in
corollary 1-1 and d, (x,y) will denote the infimum of the lengths (relative to g) of all paths in
M which join x to y.

Provided that all pairs x, ye M can be joined by an H-path, d, defines a topological metric
for M, and we have d,(x,y) < d,(»,y) for all x, y. Hence, a Gauchy sequence for d, is also
one for d,, so the following proposition follows from a result of Hermann (1962, §4).

Prorosition 2:7. Let (M, H, a) be complete; viz. all Cauchy sequences relative to d,
converge. Let f: (b,¢) - M, b,ce R, be a geodesic. Then f= A|(b,c), where h: R —> M is
a geodesic.

Our next objective is proposition 2-13. We shall require some background material, of
which a full treatment is given by Bliss (1963, part IT). The reader will be able to translate
the results given there into the present context by means of
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ProrosiTion 2-8. Let fbe a geodesic arc. There is a coordinate neighbourhood U{x} = M
containing im fand a C* map x: U— GL(n) with the property that (u(x))? d¥; is a basis for A47;.

Proof. A proof of the first assertion is given by Morse (1934, p. 109). The second assertion
is proved likewise by piecing together maps x# defined locally, after premultiplication by
suitable constant maps into GL(n).

DEerINITION 2-6. The geodesic arcf: [a, b] — M is normal if there is exactly one ®-orbit
p: [a,b] - T*such that f = mp. (This agrees with the classical definition (Bliss 1963, §77).)

DEermNiTION 2:7. We call {e H, variationally normal if pe 4, and i[£] due N, imply y|, = 0.
H will be called variationally normal if] for all xe M, there is a variationally normal {e H..

ProrosiTION 2-9. If {e H, is variationally normal, every geodesic arc f: [b,¢] — M such
that f(¢) = £ is normal.
Proof. Since a geodesic arc is normal if it contains a normal subarc, we may assume f

arbitrarily short. Let fi, f5: [b,¢] = T* be distinct ®-orbits such that nf; = nf, = f. From

2. h . )
(6), we have &) = 1 i) = ah(0) = afy0),

whence (fi—fy): [b,¢] > N*. We embed f,—f, in a C® section u: U - N*, where
U(open)>im f, so that f; = f,+uf. Let A: 771U —n1U be the diffeomorphism y — y+-umy,
so that 1*w = w+f, 1¥*4 = A, where i = n*u. For any se T, T#,

d4(0) = dA(A4 0) = 2dw(Ay 0,f,) = 2de(As 0, A4 1)
— 2d(1%0) (5, /) = 2(do+ A7) (0, f2) = dA(0) +2dR(0, ),
where f;, f, mean f,(c), f,(c). Since ¢ is arbitrary, i[ f,] d# = 0, whence, by definition 2-7,

U, = fi(¢) —f3(c) = 0. Since no two ®-orbits intersect, the proposition follows.

ProrosiTioN 2:10. If fis a geodesic arc and pe 44, , is such that x|im f == 0 and
i[ /(t)]1du = 0 for all ¢,then there is a 1-parameter family of ®-orbits in 7"* which all have
[ for their projection under 7.

Proof. Let f = nf, where f] is a @-orbit. The section y: U — T%*, U = p~'T*, determines
a 1-parameter group of diffeomorphisms
A7 WUXR—7'U, (y,r) —y-+rumy.
By a similar calculation to the preceding one, we find that
Ax (0],) = Ols,,, A, = A7=tUx {1},

whenever y is a point at which i[®@] d(7*g) = 0. All points f; () being of this type, it follows
that A, fis a ®-orbit for each r.
We assume henceforth that M is complete (cf. remark 1-1).

ryY?

DeriniTION 2:8. Through each point ue 77* construct the ®@-orbit f,: R — T™* for which
£,(0) = u. Define E: T* > T*,u— f,(1),e = nE, E, = E| T, ¢, = nE, where oe M. We call
¢, the exponential map at 0. A point of T'# at which ¢, is singular will be called conjugate.

Clearly, E, E,, ¢, ¢, are C°. For a geodesic arc f: [b,¢] — M one often calls f(c) conjugate
to f(b), meaning f = ¢4, (cf. corollary 2-3), where £(¢) = (¢—b) (¢—b)"'£(c) and £(c) is

conjugate.

39 VoL. 262. A.
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ProrosiTioN 2:11. Let f;: R — T* be a @-orbit. Then f,: R — T*, t — Af,(At), Ae R, is
a 0-orbit.
Proof. We have f, = fif; «, where

R RO T Lo w200 4L 0y
Letd, denote d/d¢ and let ¢: R—Rbe C'; then (a4 d,) ¢ = d,¢(At) = Ad, ¢(7), 7 = A¢. Hence,

by (2:6),
f/\(t) = By tfrse 0 dy = Wy frse dp = APy (@{flm) = ®|f/\(t)'
CoroLLARY 2:3. Let f: R — T* be a ®-orbit such that f(0)e 7. Then, for all te R,

O = E{f(0)}, nf(t) = e, {if (0)}

Let a 1-parameter family of H-paths in M be amap h: I, X R - M, I, = [a, f], a, f € R, such
that (a) u — A(u,v) is an H-path for each v, (b) for each v, the path in T, u = hy 0 9/0v, is
piecewise C! and for all ¢e #, the derivatives d2(¢h)/0v? are C° in u. There is a natural
diffeomorphism of period 2, ¢: TT' - T'T, which arises from the commutativity of partial
differentiation in M. Let a variation of a geodesic arc y: I, - M be a path y: I, - T such that
n(e) =n(f) =0,n'p =y (a": T— M), and ¢ is everywhere tangential to H. In particular,
if & (above) is such that A(u, 0) = y(u), each ue I}, and if 2({u} X R) = y(u) when u = « or §,
then u— hy (9/dv],,q) is a variation of y. The crucial property of normal geodesic arcs is that
every variation can be realized in this way. If 7 is a variation of y and fis a 1-parameter
family which realizes 5, we have a function ¢: R — R, v — J,( f|1; x {v}) for which the ‘first
variation’, ¢ (0), is zero. Also, the ‘second variation’, ¢ (0), is independent of the choice of
realization f'of 7, and is non-negative if y is relatively minimizing. If $(0) = 0 for some 7, in
the set of non-zero variations ofy, 7, must be an extremal of the so-called ‘accessory problem’
(Bliss, § 81). The multiplier rule, together with the Weierstrass—Erdmann corner condition,
then show that 7, must be a Jacobi field over y, namely, in this case, a C! path of the form
7: 4, T, where f(a) =7(f) =0, 7(x) = [ (2/0v](0))> f being a 1-parameter family of
geodesic arcs such that f({a} x R) = y(a). Conversely, the second variation vanishes for
such a Jacobi field. Call a Jacobi field ¢ — #(¢) trivial if 5(¢) = 0 for all £.

Lemma 2-1. If thereisa C?map k: # X R — T*,.# = [b,c], such that

(1) k*(U) = @lk(u,v):#: 0 for all U, v,
(2) mekye(V)=0 forallues,v=0,
(3) My ky (Ul ,0) is variationally normal,
where U = d[du, V = 2/dv, then ky (V) = 0 for all ue.#, v = 0.
Proof. By (2), ks (V) is vertical when v = 0; let V = V(u) denote its isomorph. Choose
ke F ; by (2-6), we have
VU0, = VEO(¥6)) = Valk(u,0), dK|pnn) = a(V(a), d),

the function on the left being zero, since [U, V] = 0 and n, ks Vl],—o = 0. Hence, « being
arbitrary, ¥ is null. Now choose pue A such that yl,.e,. 0 = V(u), each u, and define (cf.
proposition 2-1) £ = Q(7*u). Since U, ® and V, 2 are k-related,

[4,0] =k [U, V] =0 and Z[i]A=pA=o0.
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Hence, by (2-5) and proposition 2-1, we have at (b, 0),
0 =2[4]i[0] dw = i[[4, O]] do+i[O] d(m*x) = m*{i[my ks« (U)] dp},

whence, by hypothesis, 414,06, = 0. Thus, k4 (V) vanishes at £(, 0). Recall that the com-
ponents of &y (V) satisfy first order, linear, homogeneous differential equations in %, so that
the vanishing of £, (V) at u = b implies its vanishing for all «.

ProrposiTion 2-12. If y e T3 is conjugate, and if a(y) is variationally normal, there is a
non-trivial Jacobi field over the geodesic arc - M t — ¢,(ty).

Proof. Since y is conjugate, there exists ze T, T such that ¢, (z) = 0, z+ 0. LetZ be the
isomorph of z and define the 1-parameter family of geodesics

SiIXR—~> M, (u,v) - efu(y+v)}.

Then u— fi. (V] 0) isa Jacobi field. Assume it is trivial and let k: I x R — T* be a map as in
lemma 2-1, where u — k(u,v) is the @-orbit through y-vZ. By corollary 2-8, for u = 0, we
have k(u,v) = u='E{u(y+vz}. Thennk = fand, by (2:6), 7y ks (U0, 0y) = a(y)is variationally
normal. Gonditions (1), (2), (3) of lemma 2-1 are thus satisfied, whence

ks (Vi o) = Ex(z) = 0.

Since F, is a diffeomorphism, this gives z = 0, contrary to hypothesis.

Prorosrtion 2-13. Let y: I, — M, I, = [a,f] be a geodesic arc such that y(4) is conjugate
to y(«), where Ae (a,f). If y(f) is variationally normal, y is not relatively minimizing.

Proof. Suppose to the contrary and that, by proposition 2:12, there exists a non-trivial
Jacobi field y,: I, - T, I, = [a, A] over y|I,. Then the map 5,: [; - T, given by

771”2 =1 ”l(u) = Oly(u)> ue [’13/?]3
is a variation whose second variation vanishes. Itis therefore a Jacobifield. Letk: [, X R— T'*
be a one-parameter family of ®-orbits which realizes 7, ; then £|[4, £] is a map as in lemma
2-1, whence k4 (V) = 0 when ue [A,f], v = 0. By the last remark in the proof of lemma 2-1,
k4 (V) therefore vanishes also on I} x {0}.

ProrosrTion 2-14. If M is variationally normal, M is Lh.c. Also, d,
the limit being uniform on any compact subset of M.

Proof. Let U(open) = M and let f: I — U be continuous. We have to construct an H-path
Jjoining the end-points b, ¢ of . At each zeim f, there is a e H, and a geodesic arc g, issuing
from z in the direction §. By corollary 2-2, if g, is sufficiently short, it is minimizing and is
contained in U, so, by proposition 2-13, its end-points {, z are non-conjugate. By definition
2-8, there is a neighbourhood @, < U of z such that all points of @, can be joined to z by
a geodesic arc in U. By compactness there is a finite set {}, z,, ..., {,, z,, where z, = b, z, = ¢,
Zy, ..., z,€1mf, such that the corresponding @’s cover im f. Hence the broken geodesm arc
z, Cl 22€2 .z,1s in U and joins b to c. .

Next, let U = M be compact. Given ¢ > 0, we construct as above for each point ze U
a point { such that the geodesic arc {z has length < ¢. Then z has a neighbourhood @, for
which each pair z;, z,€ , can be joined by a broken geodesic of length < 3¢. Let g be a c.R.
metric for M and let § be the Lebesgue number of the cover {@_}, ¢ ;, relative to the metric d,.
Then we have d,(x;, x,) < 3¢ whenever d,(x,, x,) <9, x;, ¥,¢€ U.

(%1, %5) = 0 as x, = Xy,

39-2
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CoroLLARY 2-4. If M is variationally normal, the topology of M induced by d,, is that of
the underlying manifold.

ProrposiTiON 2-15. If (M, H, a) is complete and l.h.c., given any z,, z,e M, there is a
minimizing geodesic arc which joins z; to z,.

Proof. Denote by € the set of unit A-paths in M which join z, to z, and by Q'(> Q) the
set of absolutely continuous maps / — M which join z, to z, and whose tangent vectors are

horizontal p.p. Set I'= inf J,(f) <= d,(2,,2,).

feqo

There exists f,e Q' for which J;(f,) = {'. For, suppose to the contrary; then there is a
sequence { f;}in Q' such thatJ,(f)) —[". By dividing 7 into 2¥ (N=1, 2, ...) subintervals and
applying a classical argument (Cartan 1951, note I'V) using proposition 2-14, we arrive at
a continuous map ¢: [ - M with the properties that

§0) =z, $(1) =z, il J(f) =Lr—d,

where €, is the set of a.c. maps [¢,¢'] — M which are horizontal p.p. and which join ¢(¢) to
#(t"). Let g be a c.R. metric and, for each te I choose a solid open sphere &5 of radius 20
relative to g and centre ¢(¢) such that there is a chart y: U{x?} - R* for which U> ¥,.
Choose t'e (t,t+0/l) and let Q; be as above, but restricted to maps f for which

T (f) < 20 ( 1),

By construction, €] is not empty, and its clements have their images in¥ ;. By means of the
chart y we convert the problem of minimizing J; in €); to a variational problem in R* with
equations analogous to (2-2) and (2-3). The set y%; being compact and the ‘paths’ yQ; being
of bounded length, there is a generalized curve} (McShane 19404, theorem 6-3)

C;): {y0(7)3 ‘ﬁ[7> (D]}a

which joins y¢(¢) to y@(t'), which satisfies (2-3) for almost all 7 and for all vectors r carried,
and for which the integral

t .
1(G) =] A, (ay 1)) do
is a minimum. Because the equations 47’ = 0 are linear and because the function
r—J(a;riv)

is convex on the set {re R*|ulri= 0, A = m-+1, ...,n}, C, is the isomorph of an ordinary curve
(McShane 19404, theorem 11-1). Accordingly,

G = [ Jlagism i) dr = 1@ —o).

Going back to M and piecing together a finite number of maps of the form y~y,, we conclude
the existence of an element f e ' of length ['.

1 The reader is referred to McShane’s papers for the definitions and concepts introduced here.
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In each coordinate neighbourhood U, f, must satisfy the multiplier rule (McShane 19405,
theorem 10-1) '

Fag0), 4o, AD) = i [ Fplylr), '), A7) (2:8)

for almost all 7, for some constants ¢; and for some continuous functions 4,,,, ..., 4,. Here
F(y,r,A) is the function

J(@;(y) ) +4, 4 (y) !
and suffices denote partial differentiation. Also, 7 can be taken to be a ‘standard parameter’
(McShane 19404, lemma 7-1), so that 2{zi(7)}? = 1, p.p. The equations

Ealy,n, ) = p #ri=0 (X(r)*>=1)

yield 7, A as C functions of y, p. Hence, taking for p, the right-hand side of (2-8), we obtain
r, A as C' functions of 7. Accordingly, by (2-8), 4 (1) is C? and f, is geodesic.

3. PARABOLIC STRUCTURES ASSOCIATED WITH RIEMANNIAN SPACES

Let B be a Riemannian space (dim B = m) with metric 4, let M be a principal fibre
bundle over B and I' a connexion on M. There is a parabolic structure # (M, H, a) on M,
where a(0,7) = b(m g 0, M 7), w2 M — B, and o, 7 (e H, M, some xe M) are horizontal in
the usual sense for I'. Let x,y€ B and let 2(x, y) be the set of unit paths in B which join x to y.
There is an equivalence relation % (x,y) on £(x,y) given by: f; ~ f, if there exist H-paths
Ji» fo in M over f;, f,, respectively, such that £;(0) = /5(0), /(1) = f,(1). In particular,
Q(x,x)/2%(x,x) is the holonomy group of I' minus the group structure. The variational
problem of finding in each element £e £(x,y)/%(x,y) a representative path of shortest
length is of Lagrange type and is isomorphic to that of finding a minimizing geodesic of
P (M, H, a) joining two suitable fixed points of M.

We study the following situation. X, is a vector space over R and 2 denotes affine space,
where dim2 = dim 2, < m and 2, acts on X by translation. Thus, M = B x X is a trivial
principal fibre bundle over B with fibre X and (Abelian) group 2,. Let §: Xf — &, B be a
monomorphism. If X}, X,, are manifolds and 7¢ 7;,, ., X; X X,, pe T ., X; X X, we write
7= (71,73), p = (p1,ps), Where 7, e T, X ,p, e T} X 0 = 1,2; also, we say that 7 is tangential
to X, if 74_, = 0. Letm,my: BX X — B, X, respectively, and let t: 7% — ¥ map 7e T2 to
the element of X, which generates it. For any 7e 7B or 7e T*B, we define ||7|| = /b(7, 7).

ProrosiTioN 3-2. There is a connexion ['on M = B x X determined by a 1-form y on M
with values in %, defined as follows. For any oe ¥, (7,,7,)e TM,
70Y(11,7y) = 0t(7y) —do(y). (31)
Proof. yis C*,and 7 tangential to 2 implies y(7) = t(7), while, if p,.: M — M denotes (right)
translation by ge 2, y(p,%7) = y(7) = (ad o) 0y(7),s0 y is a connexion (cf. Lichnerowicz
1955, p. 58).

Norartions 3-1. 2{B,%,,0,b} will denote the parabolic structure 2 (M, H,a) where
M = Bx 2(2 as above), H = HM is the set of horizontal vectors relative to

I'(re Hiffy(1) = 0),
and if xe M, 7, 7'e H,, then a(7,7") = b(m, 7, 74 7"). The notation of § 2 still applies.
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ProrosiTioN 3-2. Let f;: [a, 6] — B be C'. For any de X, the H-path ( £}, f,): [a, 0] — M,
for which f,(a) = A, is given by

co{f(f)—A) = f :30( AN A (e ). (3-2)

Here, f,(¢) — A denotes the translation (e X)) from A to f,(¢).

Proof. Follows from the definition.

T*M (~ T*Bx X¥ x X)), regarded as a principal bundle over 7*#B x £¥, carries a con-
nexion [' defined by the 1-form #*y. Horizontal paths (relative to f‘) in T*M can be deter-
mined as in proposition 3-2 from their projections into 7*B x Z¥. Because of the diffeo-

morphism TS > S xS, (3:3)
we have the following commutative diagram in which all maps are projections.
2 g 5
T*2 T*M —>T*BxZy—>T*pB
g m un Ut} (3.4)
Y «—"—M —"— B

ProrosiTION 3-3. The spray ® on 7* M projects under 74, to a vector field ® on 7* B x X¥
which is tangential to 7*B and is defined by the condition that

2do’ (¢, 0) = ¢ 4' (38:5)

for all ¢’ tangential to 7*B. Here, ' ¢ 7*0,, v, being the fundamental 1-form for T*B,
and A’ (e F(T*Bx X¥)) is given by A’ (u;,u,) = ||u; +0u, |*. Moreover, © is the horizontal
lift (relative to I') of the field .

Proof. For any ve X, setj,: T*B x X¥ — T*M, where (using (3:3)) j,(u,0) = (u,{}(v,v)).
Let y = (y,y5)e T*BXZ¥, 1= (1,7,)e H,; M(= TM = TBx TX). Then y(r) =0, so
that y, t(7,) = dy,(7,). Hence,

() (1) = y1(11) + (£ (Y2, v)) (72) = y1(71) +45(t75)
= (y;+0y5) (1) = (Y1+0ys) (s 7) = b(M15a(J,Y), Mixe 7)-
This holding for all 7, we have that 7, a(j,y) = b(y,+dy,). Accordingly,

A(g,y) = llms a(4,y) 1P =y + 9y, %

This is independent of » and thus defines a scalar A’ on T* B x X such that A = 7§ 4". Hence,
if e TT* M is tangential to 2, we have ¥4 = 0, so, by (25),

do(y, ©) = 0.

Now, w = p¥w,+pFw,, where p,, po: T*M — T*B, T*X are projections and v, v, are
fundamental 1-forms on 7*B, T*X, respectively. Since ¥ is tangential to 7*X, we have
i[y] d(pffw,) = 0, whence

d(pfe,) (¥,0) =0, all ¢ tangential to X.
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We write pF® = 0,+0,, where, by (8:3), 0,, 0, may be chosen tangential to X¥, X,

respectively. Then poy ¢ = ky ¥, 0, = k40, where x: £ T*Z is a constant section
(constant 1-form on X). Accordingly, d« being zero, we have from proposition 2-1, (iii) for

all ¢ tangential to 2,

d(pto,) (¥, ©) = doy(pas ¥, poxe ©) = dk (¥, 0,) +dwy(k4 ¥, 6y)
; = duy (ks ¥, 0;) = 0.
Again, by proposition 2-1, since , is vertical in T*%, i[0,] dv, = 7%8,, where §,e T*3. So
dw,(kx ¥, 0,) = 0,(§) = 0forarbitrary . Hence, J, =0, so that §;, = 0 and 77, ®is tangential
to T*B. Finally, p, = m3m,, whence, combining (2-5) with the above results, we have for
all ¢’e T(T*B x £¥F) tangential to 7*B and all ve X,

2do(j,x¢’, 0) = 2d(pfw)) (Jx ¢’ ©) = 2d0’ (Mysj,u §', T34 O)
=2do'(§", O) = (j,x¢") 4 =94,
giving (3-5). Observe that dw, is of maximal rank on 7*B, so that (3-5) does detel:\mine a(»

vector field ®@'. To complete the proof, note that ® is horizontal relative to I'; in fact,
(m*y) (O) = y(m4 O) = 0, because geodesics in M are H-curves.

NotaTion 3-2. For any P, Qe B, ve X, let Q(P, @,v) denote the set of all (9, piecewise
C' maps ¢: [a,b] - B, a, beR, such that

b(a) = P, $(b) = Q, f Zaa(gs'(t)) dt — (o), all ve S¥.

Problem A will be the isoperimetric problem of finding, in the set Q(P, @, v) (P, @, v
fixed) a path ¢ for which the integral

[1gyiac

is least. An extremal (of problem A) will be a C! map ¥: R - B such that for each ¢e R there
exists ¢ > 0 such that ¢|[t—e¢, +¢€] is minimizing in the set

Q(;ﬁ(t—e), W(t+6), ¢ — f zijé‘a(zﬁ'(t')) dt’).

ProposITION 3:4. A C! map R — Bis an extremal iffit is the projection into B of a geodesic
of #{B,%,,0,b}.

Proof. Let f: R — M be a geodesic; by corollary 2-2, every sufficiently short sub-arc of fis
minimizing. By proposition 3-2, and because H-paths in M have the same lengths as their
projections into B, the map 7, fis an extremal of problem 4. Conversely, an extremal in
B lifts, via proposition 3-2, to an H-path in M having the minimizing property just stated.
By the multiplier rule it is therefore a geodesic. (Equations (3-5) are, in fact, the Lagrange
equations for problem A.)

ProrositioN 3-5. For every geodesic f of Z{B, X, 0, b} there is a one-dimensional subspace
Y% < X¥ and a geodesic f* of Z{B, Z, , b} such that the projections into B of f, f coincide.
(Thus, f is the lift into M of an extremal of problem A in which only one isoperimetric
condition is imposed.)
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Proof. Each ®'-orbit, being tangential to 7*B, is of the form ¢— (f|(¢), f3), where f,e 2¥
is independent of ¢. The result follows on taking for X% the subspace of £ spanned by f,. In
case f, = 0, f; is a geodesic of B, and X can be chosen arbitrarily.

NotaTion 3-3. Let g denote the Lie algebra of the group of isometries of B and let g. B
denote the set of Killing fields on B. Set @ = {ae# | B|b(¢)e g.B and da = 0}.

Henceforth, we suppose that, for eachoe Z¥, b(do)e g. B.

ProrosiTION 3+6. If dim @ = m and xe B, then T§B = U «f,.

a€Q
Proof. If |, = 0 for some ae @, then ¢ = 0. For, B is connected (line 1, §1) and each « is
covariant constant, by Killing’s equations and the condition de = 0. By parallel propagation
of a along curves issuing from », we deduce o = 0, whence the result.
We require the following lemma which does not seem to be proved elsewhere.

LemMa 3-1. If ee #, B is such that 4(«) is a Killing field, the first-order prolongation, o', of
b(a) in T*B is a-related to &(a).

Proof. Recall «is a section B— T"*B. For the proof, write a, instead of «, a, instead of 6(«),
and let o}, ay, respectively, denote the first-order prolongations of «; in 7B, T*B. We have
to show that (suitably interpreted) o,y («;) = 5. Since B is complete (remark 1-1), o,
generates a group of diffeomorphisms ¢: Bx R — B, and we write ¢,(x) for ¢(x,t). The
following diagram commutes:

TB —2 o g

*

T#B——-—>T*B
To prove this, let ye T*B, we TFB, where z = ¢, my. Since ¢, is an isometry,
w(g b(y)) = ($Fw) (by) = b(y, g w)
= b(g%y, w) = w(bg®,y).
Hence, y, w being arbitrary, b¢*, = ¢, b. The infinitesimal transformations of ¢,,, ¢*, being
a;, &y, Tespectively, one deduces immediately that these latter are b-related: «; = by ). If we

now show that a,4(;) = «f, it will then follow that a; = (b71) ea; = (b71a;) w0, = tty4 (o),
as required. To prove that 7, = 7,, where 7,,7,¢ 7, (T'B), it suflices to show that

(*p) (1,—75) =0
and that 7, f = 7,/ for all feZF | B( = &% TB), where #: TB — B. Obviously,
T 0y (@) = Ty 01(= ),
so we need only establish that a} f = ;4 (¢;) 0f. Set D = d/d¢t|,_,; at ,|, we have
@ f = D[fid a)] = D[ﬂallrﬁt(x)] = pla) = {ar ()} (A),

which completes the proof.


http://rsta.royalsocietypublishing.org/

0
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE LAGRANGE PROBLEM ON DIFFERENTIABLE MANIFOLDS 315

Prorosition 3-7. For any oe X¥ and xe B, t — (¢*,,00(x), 7) is a @-orbit. Hence,t the
2b(d0)-orbit t — ¢,,(x) is an extremal of problem A.

Proof: Setl: T*B - T*Bx X¥, y — (y, 7). Because 7%V, = ¢, 7, where ¥, = ¢*,, if v, is as
in proposition 3-3, one checks that ¥*w, = 0,. Accordingly, #[d¢'] v, = 0, where 30 is the
first order prolongation of 4(d¢) in 7%*B, and so

i[dc"] do; = —d{w,(dc")}.
Thus, from (3-5), for any ye T*B, we have at (y, o)
—2de’ (0" —2[, 80", ¢') = ¢' (A" — 40 ({4 00")), (3-6)
where A~ 40/ (14 80") — [y =+ 30 (x) [P — 4y (S (x)) = Ily—do () |2
Since ||y —do(x)||= 0 when y = do(x) and is otherwise non-negative, d(4’—4w’'(l,d0"))
vanishes at (do(x), 7), whence, by (3-6), ®" = 2/, do’—both vectors being tangential to 7*B.

By lemma 3-1, the [, do’-orbit through (d¢(x), ¢) remains in the section im /o do, whence the
21, do’-orbit ¢t - (¢*,,00(x), ¢) also does and is accordingly a ®’-orbit.

ProrosiTion 3-8. If dim @ =m and 0X¥n @ = 0, all extremals of problem A are
trajectories of 1-parameter groups of isometries generated by Killing fields of the form
b(v), where ve 0ZF @ Q.

Proof. By proposition 3-4, an extremal is of the form 7, #f, where fis a ®-orbit for the
structure Z{B, X, 8,b}. A fortiori, m, nf is the projection of a @-orbit, £, for the structure
P (M, H, a) = 2{B,3,,5, b}, where Z¥ = 3* ® Q, and §¢ = 80 if 0eZ¥, while §o = o if
7e Q. In what follows, a tilde will signify objects associated with # (M, H,&). Thus,
M= BxZ, where B= B, b = b, and £ is affine space acted on by £, Choose {,€ R and set
(y,0) = 7, f (1), ye T*B, re Z¥. Using proposition 36, let ¢%¢ @ be such that ¢°|, = y—§o|,,
where x = #,y. Then (cf. (3-1)) ¢®0y is a closed null 1-form on M. By proposition 2-9, f
projects to the same geodesic on M as the ®@-orbit f; through the point z = f(¢,) + 00| £
where £ = # f(t,). Now, #i, f, is the ®’-orbit containing #,z+ (y —0),, o+ ¢°). By proposition
317, since §(c+0°)|, = (8o +340°)|, = y—I0|,, the latter orbit projects under #, to an orbit
of 5(280+ 284°) which, by construction, coincides with , 7f.

Observe that, if 62 ~ Q == 0, Z{B, X, J, b} is not Lh.c. (definition 1-3).

4. A CLASS OF PARABOLIC STRUCTURES ON R”
Let #(M, H,a) be any parabolic space, let oe M, and set §: N} — # H, where, for

. |
pe N, 1e H,, Su|, = —L([7] dp) t, = — 3e¥i[r] du. (4-1)

Here, t,: TH,— H, takes a tangent vector to its isomorph. On H, the tensor a defines a
Euclidean metric, to be denoted by a,. Clearly, #{H, N,,J,a,} is a parabolic structure in
which, for each pe N¥, a,(dy) is a Killing field representing an infinitesimal rotation of H,
about 0. We set P, = H & N, (for notational reasons, @ is preferable to x ),

H' = {5 TPy () = 0},

T That the b(dc)-orbits are extremals of problem 4 was proved by Hermann (1962, §6). However, for
the proof of proposition 3-8 we need to know the @’-orbits from which they arise. Although an extension of
Hermann’s calculation yields this result, the following proof is more in line with this paper.

40 Vor. 262. A,
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where ¥’ is the 1-form on P, with values in N, given, as in (3-1), by

70y (1) = 0ty (Tose ) —00 (M4 1), O€ »N;“,l

N, <™ P, H, J

(4-2)

On P, we have the parabolic metric a,, given by a;,(17,,7;) = @,(t, Ty 71, th T 7,) Whenever
N1, N.€ HLP,, some xeP. Thus, #{H, N, 0,a,} = 2 (P, H',a,). We write |£] = /a;(£,§) if
(e H orifée T*P, and ||7|| = Ja,(n,4) if e TH,.

For the case B = H, in notation 3-3, @ is the set of constant 1-forms on H,and dim ¢ = m.
So, by propositions 3-7 and 3-8, all extremals in H, are orbits of 1-parameter groups of
isometries and vice versa. Let (y,,4,)€ TFH, x N¥; by the proof of proposition 3-8 the
©'-orbit through (y,,,) projects to an orbit of a,(28y, +25¢°) = a,(28y, -+ ¢°), where ¢ is the
constant 1-form on A, such that ¢°|, = y, —8y,|,.

NotATION 4-1. In the rest of § 4, the symbols t,, t, will be suppressed, and no notational
distinction will be made between tangent vectors to /1, N, and their isomorphs. We write

A:u = aOOdIuD HE N;k: (4.3)

so that Ay is an endomorphism 1, - H, (iso if I has co-rank m) and Au(7) = 2a,dy|,. We set
up a matrix type of notation whereby for any 7e i, e H¥ is the transpose, given by
7 = a,(1?), (1*)! = 1. For a linear operator «: H, -~ H,, define o’ by q (a'x,y) = a,(x, ay) = xlay.
Note that Ag! = — Au. The exponential map P} — P, for Z (P, H’,a,) at 0 will be written ¢,.
The extremal r — x(r) in H), which is the projection of the ®’-orbit through

(4" e TS Hyx N
is given by dx/dr =ax+y, o=Au x(0)=0,
since |, = 0. Assuming henceforth that H has co-rank m (so that every {e H is variationally
normal—cf. definition 2-7), we have, by integration,

e —1)a ! =+0),
x:{( Jaly (p )} (4-4)
ry (n=0).
If ||y|| = J/(y'y) = 1, then ||#(r)]| = 1, so that r represents arc-length measured from 0.

NorAaTiON 4-2. Define H; = € ® H,, i.e. H, with complex numbers as ground field. For
ue N¥, set p(p) = max (py, ..., p,,) (> 0) where ip,, ...,ip,, i = ./—1, are the eigenvalues of
the operator Au: HS— HS, z @ v — z @ Au(v). Define

N ={ue N¥|p(p) < 21}, P} =H¥® Nj={yeP¥|p(n,y) < 2II},
where 7,: P} - N¥.

ProrosiTiON 4-1. N} is convex.
Proof. Any pe N is characterized by the condition

ideu(€, &) < 211 for all £e H such that a5(§, &) = 1,

where d°u (exterior derivative of x), a¢ have their obvious meanings. The convexity of
N} follows immediately.
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TrEOREM 4-1. For each pe P} the geodesic arc f: I->P,, r—>e¢,(rp), has smaller energy
than any other A’-arc joining 0 to f(1).

Proof. Set p = y'+-u, ye H,, pe N If u =0, r—>f(r) =yr is a geodesic for H, with its
Euclidean metric. There is a compatible Euclidean metric on H, ® N, which admits f; so f
has the property required.

Since on f, 7 is proportional to J; length, it is sufficient (cf. proposition 1-1) to prove that,
for 4 = 0, any H'-arc, f’, which joins 0 to f(1), has J;(f") > J,(f) = |p|. Let N be the
subspace of Ny spanned by x. By considering the projection of finto H,, using propositions
3-4and 3-5, one sees that it suffices to consider the case where N¥ (= N¥) is one-dimensional.
Hence, if f does not have the property of the theorem, there is an H’-arc f”: I — P, for which

J(0) =0, f'(1) = f(1) and J, (") < J,(f). By proposition 2-15,assume f” to be absolutely
minimizing, and parametrized proportionally to arc length, i.e. of the form s — ¢,(sq), where
q=2z'4+vu, ze H,ve R, se l.

For ue N,, u(u) is a convenient coordinate. By (3-2), (4-4), fis given by

M f(s) = (e —1)a"ly, a=Au (4:5)

Hira S} = [ uma f ) dr, mef () = e,

Hence, from (4-1), with 7 = m, f(r), and (4-3),
2 J(5)} = [ () aler—1)ay dr

=fsy‘(1 —e~)ydr
0

= y'(s—a~'sinhas) y. (4-6)
Accordingly, from (4-5) ap{m, f(1)} = x(1),
where x(0) = (ax)! (1 —cosh )t (0 —a~!sinh fx) (ax), (47)

and x = m, f(1).

Choose a basis in H¢. With respect to this basis, the operator 1 — cosh a‘t, where a¢ = Ay
(notation 4-2), has a reciprocal for all te [0, 1]. One sees this by writing cosh a’t = cosiact
and diagonalizing the Hermitian matrix ia¢ by a unitary matrix:

ioae = Udiag (py, ...,p,) U, () = Hermitian conjugate, (4-8)
where |p;| < 211, each j. Here, p,,; = —p,, i = 1,...,7; 7 = {m.

The geodesic f” has, for some ve R*, ze H,, the representation s — f”(s), where

m, f(s) =v (e —1)az 1

: (4-9)

oufm, f(5)} = v~z (s—v~'a~! sinh avs) z. |
However, since f'(1) = f(1), x=v"1e*—1)alz, (4-10)
4ufm, (1)} = x(v) = x(1) = 4pfm, f (1)}, (4-11)

provided that 1 —cosh va is non-singular. We show below that y(#) is an increasing function
of fin the range [0, ), where A = 2II/p(4) > 1. Then (4-11) will imply either v = 1orv > A.

40-2
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If v = 1, we have the contradiction f = f”. The possibility » > 1is eliminated because, by
lemma 4-1 below, the point s = v~!1 is conjugate for /', whence, by proposition 2:13, f” is not
relatively minimizing. Finally, consider the case v = A. By means of (4:8) one verifies that,

as 0= A, (1—coshad) (1—coshaf)~! - UV,
where V (= diag(V,, ..., V,,)) has only 0’s (at least 2) and 1’s on the diagonal. Moreover,
by (4-8), 1—0-'¢~'sinh 0o = Udiag (8, ...,3,) U,

8;=1—p, 0 tsinp, 0,1 =1, ..., m.
Hence, inserting (4-10) (with v = A) into (4+7) and letting 6 tend to A from below, we obtain
PA=) =221 3 |Uz |2 V,(1—2A-1p; 1sin Ap;), (4-12)
i=1
where |Uz|; is the modulus of the jth component of Uz. A similar analysis using (4-9) shows
that 4x{m, f'(1)} has the same expression as y(4—) except that each V; is replaced by 1. But
every term in the sum (4-12) is non-negative, so we reach the contradiction

sufm, F(1)} = (1) < x A=) < ufm, £(1)}.
To complete the proof we show that y(f) increases in the range [0, 1). Differentiation of
(4-7) gives ¥/ (0) = 2(ax)* (1 —cosh 0a) ! (1 — 30 cosh 3a) (@),
and this is positive for fe [0,4).
CoROLLARY 4-1. P%\ N} contains no conjugate points.

COROLLARY 4-2. ¢,| (PE\ NF) is 1 —1.
Set m, m,: T P, — HY, N¥, respectively. (We shall not in this section distinguish nota-
tionally between 7§ P, and P¥.)

Lemma 4-1. If dim N} = 1, the set {pe T§P|p(m,p) = 211} is conjugate.
Proof. Write p = y'+4-p, where ye H, ue N*, p(u) = 211. We have
me,p = (e*—1)a "y, a = A,u,l
2u(m, e,p) = y'(1—a 'sinha)y. |
There is a non-zero eigenvector g = 5, +1y,€ H5(1,, 7,€ H)) such that ay = 2niy, namely
apy = 210y, gy = =21y,
Note that this implies 7,47, = 0. Consider 7{, 75 as vectors in 7,(P;F) tangential to H}.

Since e = diati— (1) = 0]

) (1=1,2).
H(Tose €03 177) = ' (71) J
Hence, €ox (4" (12) 11 —y" (1) 75) = 0,
so that p is conjugate for ¢,.
If 7€ T, P¥, ¢,y 7(€ TP,) is isomorphic to an element of P,, and hence to an element of

T3#P¥. One can therefore associate with ¢, a tensor e # , P¥ whose components, in terms
of a basis for P¥, are those of the Jacobian matrix of ¢, at y. The following result will be
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important in § 7 for investigating the Jacobian of the exponential map ¢, in an arbitrary
parabolic space. |

ProposiTion 4-2. There is a (convex) neighbourhood N} (¢) of the origin in N such that
the Jacobian & of ¢, is positive-definite on the set %, \ N*, where %, = H* @ N¥(¢). More-
over, for any non-zero 7(e 7, P}) tangential to /f at any ye N} (¢) we have &(7,7) > 0.

Progf. First, we prove that &, is positive-definite for all y near the unit sphere in Hf. For
ye P¥, ze P, write y, = my, Y, = MY, 2, = Ty 2, Z, == T, 2. By (3-2) and (4+4), if ¢, =0,

(9 = (e*—1)a"lyi, a= Ay, (4:13)
1

20(€,Y)n zf ype ¥Ac(e—1)a"lylds, e NF. (4-14)
0

The formula for the case 7, = 0 can be found from these by continuity. Let Ue P¥ and let &
be the constant tangent field on P} isomorphic to u. Then @ operates on ¢, (&) as already
indicated, and we have

& (8, @) = @0 e,y () = 1y O €y () + i, O o (W) + Wy O € (1) + 18y O € (L)
By the linearity of (4+13) in yy, €4 (&, ],) is the isomorph of ¢;(u; +¥,), so that
@, 0 ey (@) = up Oeg(Uy+Yy,) = uy(e*—1) o™ luf. (4-15)
As a = Ay, — 0, this tends to u, ¢}, Further calculations using (4-13), (4-14) yield
8@, 8)],,-0 = 1(un + A, 0 P+ 2 A, 0 9%, (4-16)

which, if y,, == 0, is positive for all « == 0, by definition 1-4.
Thus, there is an ¢e (0, II) such that &is positive-definite on the set

Y= {ye P¥|llyall = 1, p(3a) <}
Inspection of (4-16) reveals that, under the transformation
Yo > M, By —> Ay, Ae R,

& (i, )|, is multiplied by A%. Hence,
¢ (@, )|, = 172 & (Ady + 1y, Aty +1T,)

Define N2 (e) —{ue N¥|o(x
giving & (i, @) |, > 0 for all
Finally, by (4:15),

l/\yhﬂ/n‘
) <e}. Then ye Z)\ N¥implies that Ay, +y,e ¥, where 1 = ||y,|| 7!,
i

éa(ﬁh, ﬁh) = uh (C“— ].) ()C_luﬁ.

From notations 4-2 and a simple calculation using (4-8), one sees that this is positive when-
everye N} (¢) and u, =+ 0. Theset N} (¢), being similar to N, is convex, and hence %, has the
properties stated.

NotraTion 4-3. Choose a basis (7L, ...,7") for P} such that (»'1,...,9™), (g'™*1,...,9'")
span H¥, N}, respectively, and let (31, ...,7,) be the dual basis for P,. Write

/N ’

X R > PE (Y15 o) >y, 075 Y B R 27 > (2] 25 60 = (6, o5 607) = Y0)

In §7 we shall want proposition 4-2 in the following coordinate form.
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ProposITION 4:24. With %, as in proposition 4-2, the Jacobian matrix function

(J') = (96 (Y15 -+ Ya) [ %;)
is positive-definite on the set y'~1(%,\ N}), while the matrix (J'%f) (a,f=1,...,m) is
positive-definite on y'~}(%, n N¥).
DEerFINITION 4-1. Z = {ge P¥\ N}|p(n.q) > 2vll} where v = [4(n—m)].
ProrositioN 4-3. If pe Z, the geodesic arc I — M, ¢ — ¢;(tp) is not relatively minimizing.
Proof. Let k =y +pu= {2011 |p(n.p)} p, where ye H,, ue N¥, so that p(u) = 2v1I; also, write
L =[(A=1)/v, AJv], A =1, ...,v. Define f: I x R — M, where, for ue [,,
my f(u,v) = (e —1) a8, & = y+a,(v) 17,+6,(v) 10 = A,
a,(v) = —y'(m) (1—cos ¢, v) +y'(1,) sin ¢, v,
ba(v) = —y'(1) (1 —cos ¢ v) —y'(,) sin ey v,
Here, #,, 5, (¢ H)) are such that
any = 201y, any =—21ly,, iyl = llpoll = 1,

and ¢y, ..., ¢, are constants whose values will be assigned presently. Finally, m, fis to be such
that, for eachve R, f,: I - M, u — f(u,v),is an H-arc for which f,(0) = 0. Check that, for all »,

J(f) = [k (=llglD), (4:17)

and that f is a 1-parameter family of H-paths (§2). However, u — f (9/|,,() is not a
variation by our definition unless fy (/| ;.,,) = 0. We now show thatey, ..., ¢, can be chosen
so that this condition is verified; it will then follow from (4-17) that the corresponding
second variation is zero, and hence that either % is conjugate, or that zero is not the least
possible value for a second variation of the geodesic arc f. In either case the proposition is
established.

From (3-2), for any oe N},

o

of{m, f,(1)} = jlgte““uAa(e“u—~ 1) a1 du.
At v = 0, (d/dv) ¢{m, £,(1)} is of the form

eI (0), Iy oy £ €N,

>
M=

Since 2v > n—m = dim N,, the #’s are linearly dependent, whence the result.

5. THE MAP ¢,

In this section 2 (M, H, a) is an arbitrary parabolic space.

DeriNtTION 5-1. P is the set of equivalence classes of G2 paths f: I — M such that
f(0) = 0e M, f(0)e H, two such paths, f,, f;, being equivalent if, for all ue 4,

(1) £1(0) = /(005 (2) (d/de) [n(fi(8)) —u(folt))]lezo = ©.

NotaTiON 5-1. d,, d, respectively, will denote d/d¢, d?/d?, with evaluation at ¢ = 0.
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DerinttIoN 5-2. There is a bijection ¢,: P — P, defined as follows. Let [ f]e 2, where
£(0) =f. If u, 4’ € &, are such that (,u—~,u’) |, = 0, and if g!, ..., " is a basis for .4, we have
U—p =c,. 4% c,e #, ¢,(0) =0,0=1, ..., v. Hence,

d[(n—p) o f(£)] = dyfc, f(t] 47 0f(0) +¢,(0).d[p 0 f(£)] = 0.
The number d,[4f ()] is therefore determined by the values of x|,€ N and [ f]e P Since the
map f,: N¥ - R given by - 3d,[¢f(t)] is linear, we have f,¢ N,. Hence, ¢,, defined by
[f1—fi+/s is 1—1. On the other hand, given fie H,, f,e N,, one readily constructs, by
means of a chart at o, a C2 path f: I - M such that £(0) = o, £(0) = f;, $,[f]1 =f1+/s

DeriniTION 5-3. Denote by ' N¥ the set of equivalence classes of functions ye &, for which
x(0) = 0,dy|,e N}¥and d}(yf) = 0forall C? H-paths fsuch that f(0) = 0. Two such functions,
¥1> X2» are equivalent if d(y, —¥,)|, = 0. For each ge NF¥, denote by 'x the unique element of
' N* for which ‘u < u (recall g = &,). ' N¥ has a vector space structure isomorphic to NV¥.

Proposrrion 5-1. For each ue N¥, 'u+ . If[fle B, and yre’u, d2yf () = d,uf ().

Proof. Let{xi} be coordinate functions at o such that #?(0) = 0 and set dyr = ¢; dx?, u = g, dx?,
where 4|, = ¥;|,- The first assertion is established by the fact that y;x’—u; x'x/e 'y, where
dp; = 2p; dxd.

Next, let f; be an H-path such that f;(0) = f(0) ; writing

fit) =f(t)oxi, fi(t) =A(t) o,

we have 0 = diyfi(t) = A 1(8) . Si(O)}
= /1(0) 0 9. fi(0) +¥;(0) .d, fi (2)
= /(0) 0%;./1(0) +¥;(0) 'dtﬁ(t), (5:1)
0 = d,ufy(t) = /1(0) 0 1. fi(0) +4(0) . d, f(2)
= 1(0) 0. f(0) +4:(0) - d, fi(8). (5:2)

Comparison of (5-1) and (5-2) shows that
£(0) ot £1(0) = £(0) 0. f1(0),
whence QY (6) = (0) 0 fH(0) +(0) ., £1(0) = d,f ().
NotaTion 5-2. Let M, M, be manifolds and let ¢: M, — M, be a regular embedding. We

define the normal bundle (M, M;)* of M, in M, to be the quotient ¢~}(7TM,)/TM,, where
i~Y(TM,) is the induced bundle over A4, (Steenrod 1951, p. 47). Let

i,: N¥>T% 4, N¥>T% ¢:Nf>N* ¢ N*¥=>T*
be inclusions and, as always, let #: 7% — M. O,, will denote the zero vector bundle over M.
The following are vector bundles over N'*
JM = (TT*ang'H) < TT*, N = M|(TN*nn;10,,),
M =i (TT*) nn5'0,,c M, N=M|(TN*an;10,) < N.

The following are vector bundles over N}, where oe M is arbitrary

Me=i'Mc M, No=ii'N=(N¥T¥* <N,

Mo =i7IM M, N°=i7 N <N.


http://rsta.royalsocietypublishing.org/

. |
/I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

322 C. B. RAYNER
There are natural surjections

f: M N, #:M->N, #,: M- N, #%:Me—>No.
Define P(=PM) = H® N, P* = H* @ N*. There are diffeomorphisms

j: N> P*, j:No- P¥

where j, = j| N°o. To define j, let ve N belong to the fibre over v,e N¥, oe M. Then v is a
subspace (coset) of 7, (T) whose isomorph in 77 is an element v, e H}(~ T¥|N¥). Define
j(v) = v,+v,. Further, define p, = i¥j,: N0 - H¥ wherei,: H < P.Ifke Z, M, r=0,1, ...,
we often write ¢« instead of ¢ k. Let ye# X, where X is a manifold, and let U = X be the
critical set for y. Then #[y]e #, X|U will denote the Hessian of y on U; it is defined for
xeU, 7, T'e T, X by 2#[y] (r,7") = 17'(y). If pe N¥, ¢e’u, then ¢y is critical on NF (by
(a) below), and so #°[¢)]: M° — R is defined. From proposition 51 and the symmetry of

the Hessian, one deduces that #[*)] is the same for all e 'u so we define H#[°u] = s#[*y],
where ¢ ‘u. Observe that, for each 7e M°, u — #[°u] (1,7) is linear, so that #[¢?] (1,7) e N,.

ProrosiTioN 5-2. The exponential map ¢ induces a fibre-preserving map é: P* — P.

Proof. We construct, for each oe M a map g,: P} — P,, and then define 2 by &| P} = ¢,. Since
#,is onto, given ge P¥, we can choose §e M such that ¢ = j, #,§. Write ¢ = ¢, +¢,, where
g € H¥, g,e N*. Construct a C? path f,,: I - T such that f,(0) = ¢,, /,(0) = §. The C?path
¢,/q: I = M has, as we show in (a) below, its tangent vector at o in H, so it defines, by
definition 5-1, a class [e, f,] € F,. In (b) we shall prove that [e, f,] is independent of the choice
of § representing ¢, and of f, tangential to § at ¢,. Using definition 5-2, we can therefore

define &, by ¢ — ¢,[e, f,]-
(a) For all ue A, eX | N} =0

Let ue N¥, ye M°|,. If y is tangential to N, ¢, y = 0, since ¢,( N*) = {0}. Suppose, there-
fore, that y is not tangential to N, and define A: R? - T, (§,9) - E(u+7y’), where y'e TF
is the isomorph of y. We use temporarily the symbols X, Y, «, y to denote vectors and maps

given by
X =0/ Y=20/d,x,y: R?—> R, (£1) =&, 1, respectively. (5-3)

Thus, dx(X) = X(x) = 1, etc. Now, A = ¢,A maps R x {5} for each 5 onto a geodesic of M.
Hence, for any p'e A,

(A*) (X) =p, =0, where A*p = p dx+u,dy,p, e R2

On the other hand, A, X, ) = 0, 14 X then being tangential to N;*. Accordingly, on R x {0},
we have, since [X, Y] = 0,

(A% 0dy) (X, ¥) = 0 — X(A®) (¥) ~ Y(A*) (X) = duy/ €.
Thus, #,|R % {0} is constant. When £ =7 = 0, 1, ¥ = 0, whence
py = (N*p) (Y) = (5 1) (A5 ¥) = 0.
Hence, 4, = 0 when 5 = 0; in particular, at (1,0), 1, ¥ = 7, so that
Hali,00 = #eox y) = (€5 1) (v) = 0.
But ye M is arbitrary, and so ¢Xu| N}* is zero. Taking y = f,(0), this gives ¢, f,(0) € H,.
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(b) &,: PF— F,,q— d,le.f,], is well defined
Let m,,m,: P, —~ H,, N,, respectively. From definition 5-2, proposition 5-1 and (a),

Ty ¢o[eof;1] = eo*f;](o) = box é\'
With E, as in definition 2-7, we have ¢, = nE,. Since E,|N* = 1, E | M° leaves vectors
tangent to NJF fixed, while 7%, #, map them to zero. Accordingly, £, , induces a map

E,: N° - \° by commutativity of the first square in the following diagram:

o o

(5-4)

HCHCC, Ty ¢o[eo.fq] = ﬁo Eo* é =T El ﬁoé =m lf:‘ljo_l q. .
On the other hand, from definition 5-2, m, ¢,[¢, f,] is that element of N, which sends
u(e N¥) to }d, e/;f;](t). By proposition 5-1 and notation 5-2, for any yre 4,
d,uf, () = diyf,(t) = 2] (4, 9)-
The map h: Mo — N, 7 — #[?] (1,7),

induces by commutativity a map E,: No - N,. This is because ¢ is constant on N, so that
H[¢)] (¢,7) vanishes whenever ¢ or 7 is tangential to N;¥. Thus,

Ty ¢o[eo‘fq] = }l@ = Ezj;'lq.
Defining [ =i, n, E, +1, E,, we have ’

. b=l =1 E j;t +i, Ey 7, (55)

and this proves the result.
The importance of the map ¢, lies in the facts (1) that its properties are easily computed,
using §4 and theorem 6-1 below, (2) that it approximates to ¢, near the origin, as will now

be shown. First we need

NOTATION 5-3. Let gm+1, ..., u" be a basis for N}* and choose coordinates {x'} at o such that
xi(0) = 0, x*e 'y, Then {x'} will be called special coordinates at 0. Let y: Ufxi} — R" be a special
chart at oe M, and assume for convenience that the domain of each x?is M, i.e. x’eZ. Set
ni = dxi|,, define a basis {y'/} for P¥ by '* = i*p*(e H}), ’* = 9%, where i: H,— T is the
inclusion, and let {;}, {;} be the dual bases for P,, 7, respectively. Define maps ¢, = ye, y,
éo = ¢,éoxl by T:—-—i"—*M

Rr Rr

41 Vou. 262. A.
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where (g1, oo th) = Yills X' (G -ons¥) =97 ¥/ i) = @ our). I ye R* we write
e,(y) = (eX(y), ..., €5(y)), and similarly for &, Recall that Greek suffixes a, f, ..., ¢ range from
1 tom, and «, ..., p from m-+1 to n.

ProposiTioN 5-3. With notation 5-3, we have on any open ball {(yy, ..., ¥,) € R*|yi+ .-

+y2 < 82,8 > 0},
6%(y13 3yn) = ég(yla "'Jyn) +O(|y|2)a

ez))\(yli "'>yn) = ét)}(yla Jyn)+0(|yl3)a

m % . . .
where |y| = (Z yg) . The functions £ and ¢} are the linear and quadratic terms, respectively,
1 ,

in the Taylor formula for €%, ¢} in powers of (Y15 eeesYnm)-
Proof. Clearly, ¢, is C*, and if 2. denotes the kth remainder in the ¢, expansion, we have
. et 9% .
6 (s eoir ) = Yo il FWulp | oot 56

(1o 0280) =Yag| TaVabp gy Gy, k (5-6)
where 4’ = (0,...,0,Y,11, -+, Y,). Lhe term ¢ (y') is zero, because ¢,(NJF) = {o}. In (56),
writing § = Y, 9/ %o T = X2 (9] 3;) (€ MO ),

joe|, = f(xie,y) = dx (¢4 14 7) = ¥ (6o (Yo 7))
= ”,i(ﬂh éojoﬁo(yaﬁa)) = ”,i(ﬂh éo(yj ”/j)) = ﬂli(ﬂh 50?(,(%: AR ] yn))
This vanishes if i = m-+1, ..., 7. On the other hand,
y~06f,°ly/ = ’7'“(@0%/(%3 :yn)) = ég‘(!/l, ---,yn),

giving one of the equations required. By (5-4) and (5°5), m, &,j,%, = E,#, = h, and because
goe}|, = 0, we have
Jap 2| = oo (xe,n) = FoFo L (y; 1)}
? 0y % gly ’
= 2 (%] (x50 X49) = 20" (M 8o B (Y 477))
, = 29’2 (2,(y;17)) = 263 (Y1> -+ > Ya)
as required.

CoOROLLARY 5-1. &, and hence &, is €.
If ¢, 7 are corresponding principal minors of the Jacobians dei/dy;, d¢i/dy;, respectively,
containing exactly 7 (=0,1,...,n—m) of the last n—m rows, then # is a homogeneous

polynomial of degree 27 in (1, ..+, Ypm)- Consequently, defining
p=2zqhe N¥ 2 =2,0[0,+C0 0% 215 -5 Zns Coits ooor GuE R,
we have (Z)Zrofb("l(,u): (Z)Zrojlx"l(/t) = (27)!j(21> "‘:Zn)a

the result being independent of the {’s. Let 7 be a non-null constant vector field on 7.

Choosing Z = (y7!) 47, we have
| o (fox™ )|, = (27)!ﬁ(zl,...,zn). (5+7)
Observe that aei/ayj‘x*l(,u) = (9/9%) {xieo(yk ”k)}‘x"‘(/u = ﬁj (xjeo) l/t' (58)
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COROLLQRY 5-2. Assume that, for some ¢> 0, proposition 4-2ais true for the matrix-valued
function (J¥) = (d&i(y,, .--,¥,)/%;). Then the first non-vanishing derivative (which may be
the 0th) in every non-null direction 7 of every principal minor of the matrix function
= (70 («e,))|, is positive for all pe N¥(e).

The following result will be needed in §7.

ProposiTiON 5-4. The map é: P* — P, defined in proposition 5-2, is C*.

Proof. Let m,, m,, n" project P onto H, N, M, respectively. Let n': P* — M, and let ¢, ¢,
denote the inclusions H, N — P. Since j#: M — P* is C* ,of maximal rank and onto, a
function 7: P* — R is Ciffrj#t is C*. The proposition therefore holds if yreZ# P implies
yéjhe F M. In case § = on", ce FM, we have on"¢ = on’e FP*, since & respects fibres. On
the other hand, the set of C* functions hom (P, R) u n"* %M contains a set of charts covering
P. Thus, we can assume y to be a homomorphism, so that ¢ = i, m, + i, m,. By (d) of the
proof of proposition 5-2, o

m ejht = ey |M: M — H.
Since the inclusions M — TT* and i, are C®, i, m, £j# is C*.

Finally, a homomorphism ¢¢,: N — R is an element e 4. To prove that ¢, m, ¢ is C=,

let 7e M; we have (cf. proof (a) above)

Yium, 2jA(r) = Ho) (1,1).
Introduce a C* Riemannian metric on 7% and let ®e# ! TT* be its geodesic spray. The
i1-form ¢4 on T'is also a C* scalar on T'T*, so the function A: TT* - R, y - §® o, is C~.
To interpret ®o|,, choose an embedding 7 of y, namely a C* section §: T* — T'T™* such
that yeim g, 7,y = ®@|,. Then, since 74 (P|,) = y, where #: TT™* — T*,

Docul, = (§4 7y ©)oul, = yo (§*u) = y(uj) = 25¢[°ul (4,y)

if ye M, by proposition 5-1 and notation 5-3. Accordingly, A| 41 = ¢, m, 4j#, whence the
latter is C°.

6. PROOF OF THE IDENTITY ¢ == ¢’

Our object here is to prove theorem 6-1 which, by proposition 5-3, can be interpreted by
saying that the map ¢, behaves like the map ¢; of §4 near N;. For this purpose, we need
several lemmas. Throughout this section oe A will be fixed.

LeMMA 6-1. The scalar 4 of definition 2-1, vanishing on N¥, has a positive, semi-definite
Hessian #[A] on N¥. #[A] induces a quadratic function }/° - R which projects by 7, onto
a quadratic function A,: N° - R. Moreover, the 2-form dw on 7% induces a bilinear form
d@, on each fibre of A4 such that dé,(#,7,,%,7,) = dw(r},7,) for all 7, 7,e M|, and all
ue Nj¥. -

Proof. The first part is immediate. The last part follows from the fact that, if «;, a,, vy,
vye M|, pe N, where vy, v, are tangential to N, we have

do(a, +vy, ap+vy) = do(ay, ay),

since, for example, by proposition 2-1, if #, (e N¥) is the isomorph of the vertical vector V1

(i[v1] do) (@) = Py (2,) = 0.
41-2
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LemMma 6-2. There is a diffeomorphism
kNe—->T*H e N =H o Hf® N (6-1)

determined by the structure # (M, H, a) with the properties that, if 4}, ] are the forms 4, o’
of proposition 3-8 for the case where B = H,, ¥ = N,, 0 given by (4:1) then

(i) 4, = k*4j,

(i) for any ue N° (recall that N is a vector bundle over N;¥) and vertical vectors
g, re T,N° we have dw;(ky 0, ks 7) = d&,(to, t7), where t is the operation which takes a
vertical tangent vector in N\ to its isomorph.

Progf. We have projections
m N —H, mq: N°—> NFE. (6-2)

For any p,e N}, choose pe A4, such that x|, = g, Then p: U— N*(<= T*) for some open
U (30) in M. If y, g are two such sections, with j|, = p,, then, for any oe H,,

Jise 0— s 0 (€ Tuo N*)

is vertical in NV*, viz. tangential to N¥. Hence, g, induces a homomorphism s, : H, - N°|,,
independent of the embedding of #,in .#,. Moreover, s, is mono, since 7, s, = 1. Next, with
4 B o as above, u—Ji = ¢ ,, for some c*eF, p,,e Ny A =1,2,...,n—m, where ¢}|, = 0.
Then i[c] d(xg—u)e N¥, as one easily checks, and so we have a homomorphism H, — H}*
given by ¢ —i[o]dg,+ NF, where du, = du|, for any pe A4 such that u|, =, For any
veN, let g, = myv; thenm(v—s, mv) = 0,s0 thatv—s, m ve Ne| . With p, as in notation
5-2, we define (using the isomorphism H¥ ~ M}/ N})

My: N0 = HF v = po(v—>s,,mv) +3i[m v] dp,+ NG, |
kiN°e— T*H ® N}, o — m a+mya+m;o. J

| o

(6:3)

It is immediate that £ is a bijection. The proof that £ is a diffeomorphism will be omitted.

The projection 7, can be realized in another way as follows. For any u,e N, choose
¢e ', (definition 5-3); then d¢: U— T*, some open Uso, and (d¢),|H,: H,~T,T*
induces a homomorphism s}, : H,—N¢|,, such that m, = p,(1—s m,), as will now be
shown. Choose ¢, 7€ i ; then o(¢) = 7(¢) = 0, and so we can extend ¢, 7 throughout U in
such a way that o(¢) = 7(¢) = 0 and [0, 7] = 0in U (e.g. by taking a chart {x} where ! = ¢,
and ¢, 7 the vector fields defined by d/dx?, d/dx®). Because £ [s] (d¢) = ZL[7] (dg) = 0, the
pairs ¢, ¢’ and 7, 7’ are dg-related, where o’, 7" are the first-order prolongations of ¢, 7in T™*.
Choose pe A, 0", "€ F1T* such that u|, = u,0"|, = py 0,7"|, = ps 7 and also such that
¢”, ¢ and 7", 7 are m-related. Note that ¢’, ¢ and 7', 7 are n-related. Consider the expression
(evaluated at )

do(ps 7 —(dg) s 7, (df) 4 7) = do(py 0, (dp)s 7) — ((d¢)* 0 dw) (7,7)
= 0"o(1') = (Z[r'] w) (¢") — (d?*) (0, 7),

using proposition 2-1. Here, £[7'] (v) = 0 because 7’ is a first-order prolongation (proposi-
tion 2-1), d%) = 0 and w(7)|, = y(74 7') = y(m4 7") = w(7"). Hence,

do(py 0—(dg) 40, (df)s7) = 0"0(1") = (uy 0) (s 7) = op(7). (6-4)
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For any a, fle R there is an orbit f, ; of the field ag+fr for which f£,4(0) = 0. Accordingly,
by proposition 5-1, since 0 = 7¢ = 0 and f“ﬂ(O) eH,

(04512 8l, = (a0 -+ 1) ploor+f1)], = 0.
From the cases where (a,f) = (1,0), (0,1), (1,1), we get ou(t)+71u(c) = 0, so that, [o,7]
being zero, (6-4) gives

do(ps 0 — (d$) x 0, (d9) s 7) = F du(0, 7). (6:5)
Now, dp(e,7) = {r*(i[o] d)} () ) = do(Qur* i[o] dps, (dg) 4 7),
where Qs as in proposition 2-1. Since gy 0 — (d¢) 4 0, Qn* i[¢] du are vertical vectors, while
7|, is arbitrary in H,, (6-5) implies

(dg) s 0], = pro 0 —3Qn* i[ o] dp+-¢, (6-6)

where i is tangential to NF. We conclude that, for each oe ),

$10(0) = 5,,(0) = 5Qm* (i[ o] da, -+ N5F),

Ho
giving m, = p,(1—s,, m;) as required.
To prove (i), given veN’|,, choose ¥, 7e M° such that #,7 = v, #,7 = s, m v, where
ue A, is an embedding of g,. Then 7 is tangential to N*, whence s#°[4] (7,0) = 0 for all

ge T T*. Accordingly,

A, (v) = #[A4] (3,7) = #[A] (=7, —7) = A(0),
where { is the isomorph of the vertical vector ¥—7—the last equation follows from the
quadratic structure of 4. If i: H, = T,, we have i*{ = p,i,(?—71) = p,(v—s,, m ), so that

A(Q) = I1*P = llpo(v—5,,m V)]
On the other hand, by (4-1), (6-3) and proposition 3-1,
Ai(kv) = Ay(myv+myv+mgv)

= ||myv+0(myv)|? (evaluated at m, v)

= lpo(v =5, m V)|,
the entities t¥i[m, v] dg,,i[m, v]du,+ N5 in (4:1), (6-3) being identical up to an obvious
isomorphism. Combining the last three results yields (i).

To prove (ii), observe that £, 7, k, 7 are tangential to T*H, at ku, and so, by proposition
2:1, part (v), dwi(ky 0,ky 7) = (myt0) 0 (M t7) — (Mo t7) O (0, tO7).
Choose &, 7e Mesuch that %, ¢ = to, 7,7 = tr, respectively. Define &, &,, 7}, 75, such that
0y = () w7y 0, 7= (df)sms?, ¢e'(myu),

noting that Me < TT*., We have dw(¢,7,) = d%p(ny &, 7y 7) = 0, dw(&,,7,) =0 (&y, 7,
being vertical), and dw(&,, 7,) = (m, to) o (m, t7), by proposition 2-1, 7, te being the isomorph
(modulo N§¥) of ¢,. Accordingly

da, (to, tr) = dw(F,7) = (myte) o (m tr) — (my t7) O (m, to),
as required.
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DeriniTION 6-1. Let W be a vector space over R. There is a vector field w on W defined,
for any ge FW, by d
w(@) ]y = L)

We call w the natural tangent field on W. The natural tangent field on a vector bundle will
be the vertical tangent field which is natural for each fibre. In particular, for 7%, P* we
denote the natural tangent fields by v, v/, respectively. (Evidently, v = Q(w).) The ray
through #’e W will be the map r,,.: R— W, t — e! #. Rays are orbits of the natural tangent
field.

Lemma 6-3. Let a linear functiona: T*H, ® N - Rsuch that«(N}) = 0 be given. There

exists in M a neighbourhood U of 0 and a C= function f: 7~ 1U — R such that, for each Ae o,

a(A) = A(6), (6:7)

W (f) = v1 (@) |eas (6:8)

where k = ki, and o] is the projection into 7*H, ® N of the natural field v’ on 7%P, (under

the map corresponding to 7, in (3-4)). If a(H, ® N¥) = 0, f is a bundle homomorphism
(namely a tangent field U — T'), and f| T¥e H,.

Proof. Choose special coordinates U{x'} at o; they induce coordinates 7~ ! U{m*x,y;} in T'*
such that y,|N¥e N,,v =m+1,...,n. For each g = u,d¥’|,€ N¥ (415 - -+ fhye R) we have an
element s, #’¢ ‘wand asection ¢ ,;: U~ N*,u—>p,dx|,. Thereis a covector de T3 T%#(0 = zero
clement of 75) such that &(1) = ak(A) for all Ae |, Let@ = a,d(n*x%) +a’ dy;, a;, 0/ € R, and
let the last equation define & throughout 7~1U. Choose a section §: N} — M° as follows:
0(0) is arbitrary, but vertical in 7*, and, for any ue N¥, 0(x) is obtained from 6(0) by
translation in 73¥. The H}-component, m,7,0(x), of k0(x) is independent of g, so the same
holds for axf(x). On the other hand, by the linearity of the y;, @0(x) = «/.0(x) oy; is inde-
pendent of y, whence @0 = akf—these maps agreeing at 0. Next, let §": N} — M° be any
sectionjfor which 7, §'(4) is independent of g and also ¢’ (x) = ¢ ux M 07 (1), for each u, where
4 =n,d#’|,. As in the preceding case, axf’ is a constant map, while

80/ (k) = 0.0’ (1) o () = a4 0'(4) 0.4,
which is independent of 4. Hence, 80" = ax6’, and since sections of the form 6, §’ form a basis
field for JM°, we have & = ax. Equation (6-7) follows on observing that & = df, where
B = a;m*xt+aly;.

To prove (6-8), note that, at any pointu = u; +u,+pof T*H, & N (uy, uy, pe H, , H¥, N¥,
respectively), o; is the tangent vector isomorphic to 4,4 g, and so, since a(x) = 0, we have
vi(«) = a(uy). Hence, taking u = «A, where A= A;+2,e M|, A, =¢ .7, we have
k(dy) = uy+p. Accordingly,

(@)= ax(dy) = () = A(y;).-
On the other hand, v(f) = a/y;, by definition of », whence

Wo(f) = /A(y;) = v1(@) |-
Lastly, if «(H, ® N;) = 0, we have that ;= 0,7 = 1, ...,n. The y; being linear on each
fibre, # = «/y; is a homomorphism. Moreover, in the third sentence of this proof, 1 tangential
to N implies akd = 0. Hence, a™*! = ... = a" = 0, so that f = a7y, and f| T'e H,.


http://rsta.royalsocietypublishing.org/

. |
/I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE LAGRANGE PROBLEM ON DIFFERENTIABLE MANIFOLDS 329

NoraTioN 6-1. For any #e# ,,7r = 0,1, 2, ..., % will denote ¢} 7.

LemMmA 6-4. Each oe P¥ defines canomcally a vector in f, (to be denoted by , 4 & ,.d) as
follows. Let v, = v| T¥ be the natural tangent field on T3F; then

(ﬂh* é\o* 0) (¢) = 6‘1}0(‘3¢)’ ¢€ﬁM;
where &(e M° = TT¥) is chosen such that j, #,& = ¢ (see notation 5-2).

Proof. Since @ is constant on N, v,(¢) vanlshes on N, so that §u,(°p) is independent of
the choice of §e #; 15,1 0. Moreover, if ¢, yeF M,

00,(°(9Y)) = 0,(P°Y) = Y. 50,(°p) +°¢. Gu,(Y),
as is easily verified. The operator m, &, d, being linear, is therefore in 7. By the proof of
(@) in proposition 5-2, ge pe N} implies that °¢ is stationary on N;*. Let ¢ be embedded in
a C° tangent field on T'T*. Then
00,(°p) = [8,7,] (°4) 42,6 (°9),
where both terms on the right are zero. In particular, #(°$) vanishes on N}, so the second
term is zero, v, being tangent to N;f. Accordingly, m, 4 &4 6e H,.

Lemma 6-5. If f: R — P¥ is a ray, then, for each {e R, the tangent vector at £ to
M8 f: R — H, is just m, 4 6,4 f (£), as defined in lemma 6-4.
Proof. Set ¢ = f(1) and choose ge M, such that j, #,§ = q. Writing

q=q,+q qeH}, g,eNF,

one sees that f () = f , where f(£) is the translate in T of e£§ to the point efg,. For
any ¢e Z, the tangent Vector to m, &, f, evaluated on dg, is

d A d 2 d A

a8 S (€)] = Gz [dd(eosf (€))] = G [/ (6) 0 (). (6:9)
Define R TF, {&n) = (gtan),

where §,e T is the isomorph of §. We have, by (6:9), since {0 9/0€ = V| ¢z,
S 8O = o5 [ (D)o = SO ()

LemMA 6-6. If f: R— T7¥isaray, E, fis an orbit of the field v+ @. Conversely, if[: R — T*
is a (v @)-orbit such that lim [(f) = 0, then [": (0, ®0) = T*,s - s71{(Ins), is a @-orbit for

{—>—

which y = lim I'(s)e T¥. Consequently, £,y = {(0).

s—>0+
Proof. Let h: R—T* be the @-orbit for which #£(0) =f(1); then k(1) = 0|y,
By proposition 2-11, s—>eth(ets) is the @-orbit through e'2(0) = e/f(1) = f(¢), whence
E, f(t) = eth(e!). Writing z = E, f(t), we have, for any ¢ge FT'*,

{Eps S (1)} (9) = dt¢E S@) = {e%(et)}*vﬂ +et 5 AEh(0)} e

Now, O)]. = 2 Hleh(e)} oy = e g Heh(0)} e
which yields the first result.
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To prove the second statement, let ge F71*. Then
: _d
I(s)og = L4}
=<w§¢mﬂ®nmﬂ+~ $5 110} e

:_sulv¢|l'(s)—l_‘y ¢{5 ll }lv Ins*

Hence, by (2:6), since [ is a (v+ ®)-orbit, while A, v = v for all 1 > 0,

%gﬁ{s‘ll(v)}'v:]m = ©+0) (5 6) Lmey
= (s v 4571 0) (8) 1)
= {v(¢)+5.0()}H,)-
Thus, I'(s) = O|,)-

Finally, by the usual existence theorem, the ®-orbit /' can be continued beyond s = 0 (in
the negative sense), and because [(Ins) — 0, while #/'(s) = n/(Ins), each s > 0, we have
that lim /'(s)e T3F.

s—>0+
Lemma 6-7. Let {x'} be special co-ordinates at o, and let z = g, dx’e A4, where ;e #. Then
dy; ® d«f|, is a skew-symmetric, bilinear form on H,.
Proof. It suffices to prove that, for all 7e H,, 7(4;).7(x") = 0. Let [ f]e P, where f(0) =

since g,|, = 0,0 =1, ...,m, we have

dof (1) = d,Lmf (£) S (8) 0 x'] = 7() .7 (x) 4|, A7 £ (2).
Now, ¢,4”e’u, where ¢, = p,|,. Hence, by proposition 5-1, ¢,d?x'f(t) = d,uf (¢), and the
result follows.

NoraTION 6-2. Let X, for the moment, denote one of the spaces P¥, T3, T*, and let §

o

denote the following vector fields: the natural tangent fields on P}, 77*, and the field
v+0 on T*—y,, v, respectively, denoting the natural tangent fields on 7*, 7*. Then §
generates a group of diffeomorphisms y: Rx X — X, and we write y = ¢, ¢, V' when

X = P¥, T, T*, respectively. The trajectories of ¢, ¥ are rays and, because v, is £ -related
ovtOwebave W E = By, WaE = Bt (6:10)

where we write ¢,(x) for ¥ (¢, x). Recall the definition 2:7 of E: T* — T'*,

Lemma 6-8. For any 7¢ M"Iﬂ (4 = 0) not tangential to N¥, the sets im (¢ — 1, 7) < M°
and im (t — Ey ¥,, 7) < <M° can be locally embedded in C* vector fields in 7% (the first
being vertical) which are E-related.

Proof. Choose a Riemannian metric g on M. Let § be the submanifold of 7* given by
{ye T*|g(y,y) = g(#, )}, and embed 7 in a = vertical vector field (which we call 7) defined
on a neighbourhood U of g in S. Next, define 7 on each T7}%, xe nU, by the rule

T = A (7],) - (ve U),

where A: Rx T* — T* is the group of diffecomorphisms defined by the field v (so that
A|T¥ =1,). E (remark 1-1), being a diffeomorphism

Q gt E, 1 is E-related to 7.
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THEOREM 6°1. ¢, = ¢,: P¥— P,

Proof. With the notation of (5-4), define £: P¥ - N°x N,, y— (E,j;y, E,j;ly). Using
(6:1), let k: N°x N, — T*P, take (v,,v,) to kv,+v,, regarding T*P, for the moment as the
vector space (T*H, ® N¥) @ N,. Then £, defined by the commutativity of the first triangle
in the following diagram, is such that 8, = 7' £, . Here, #, takes (v,,v,)e N°x N, to

’

TP, 1 ~T*H @ N*

AN,y
Nl A 7.

.‘7\C’><No o - N°

7V, 4V, The rest of the diagram is commutative by construction, p; being the map 7, of
(8+4) for the case B = H, ¥, = N,. Theorem 6-1 is equivalent to the assertion 7', = 7'E!,
E, being the map E, for the structure Z (P, H', a;).

The natural tangent field v" on T*P, is 0bv1ously pri-related to v. Since v’ is vertlcal it is
horizontal with respect to the connexion {* defined in the paragraph following proposition
3-2. Hence, by proposition 3-3, ®' 4 is the horizontal lift of the field ®] —H)l To prove the
theorem we show that, for any ray f: R— P¥, (i) E .J 1s horizontal relative to I‘ (i) p; E o 18
a (O7+v})-orbit, (iii) lim Eo f(t) = 0 (the origin of T*P), (iv) 111';1r i IEO Sf(ns) = £(0),

t—>—00 s>

Ho (6-11)

where f,: T*P, — T*P, multiplies covectors in P, by A.1 Statements (i) and (ii) imply that
E fis a (0'+v')-orbit, so by lemma 6-6 and (iii), £, f(0) = E.f(0). Since f(0)e P¥ is
arbitrary, we have B, = E!, whence the result.

Proof of (i). Since I' (on 7*P)) is defined by the 1-form 7'*y, E, fis horizontal relative to
fif 7'E, f = &, fis horizontal relative to I' (of proposition 3:1). We therefore show that 2, fis
an H'-curve. Let f, { be as in the proof of lemma 6-5,and let X = 9/3¢, ¥ = d/dy. It is easy to
construct local coordinates {z,} in T%*such that 4, {(€, 7) = £5} +702, and hence a local vector
field 7 on 77 which embeds {, (J/dy). We then have that X, v, and ¥, 7 are {-related, while
[v,,7] = 0.

Choose pe A, and set u, = u|,. Writing d, = d/d§, we have

polm &, £ (8)) = #T4) (f(£), £ (),
HolTas o (E)) = dgop) (F(E), /()

Let {x'} be special coordinates at 0 and let z = y;dx?, where y,e # and p,|, = 0,2 =1, ...,m
Since °4(v,) = 0 (rays in T¥ being mapped by ¢, onto images of geodesics in M) at {(&, 0),

wehave o = () = {4}
= 27(%;) . 70,(°%%) + 1, |,-v, T2(°x)  (v=m+1,...,n). (6-12)
Now, u,|,.¢¥”€’'u, so that the second term on the right is just
20, #p] (7,7) = 21,(Ma by f (£)) (613)

1 By notation 1-1, £, should be written A; however, this would be confusing here, since 7*P, has a vector
space structure.

42 VoL. 262. A.
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while, by lemmas 6-4, 6-7, the first term equals
2r () ()], — (dpga da) (r, §) = du(r, ¥), (6:14)

Here, ¥, ¥, respectively, denote m, 8, f(£) (= €,57); Mux 6oy / (£). Combining (6-12), (6.13),
(6:14) gives, for each p,e N¥,

ﬂo(ﬂn* éo*f(&)) —I——%dﬂ(ﬂh éof(g)b T éo*f(£)) = 0.

In the notation of (4:1), (4-2), this says that x,07'(¢,4 f(£)) = 0 for each ,i.c. 2, f is an
H'-curve.

Proof of (ii). If fis null, j; L f(¢) e N, is represented for each ¢ by the zero tangent vector to
T* at ey, for some ue N*. Hence, in terms of the decomposition (6-1) of 7*H, ® N, one
checks readily that kE,j;1f(¢) = elu—t — e'u being a vj-orbit. (Recall that ®'| N =0
whence Of| N} = 0.) Assume now that fis non-null. |

In (5-4), #,is onto, and one sees, using notation 6-2, that fis of the form

¢ %j.oﬁo %t* T (:¢tj0ﬁ07)>
for some 7€ M°, 7 = 0. Thus, p(t) = k¥, E, 4 Y15 7.

Let us modify notations by writing 7|, instead of 7, the symbol 7 now standing for an
embedding of 7| , in a vertical vector field on T7". By lemma (6-8), we assume that 7|T¥ is
E -related to a tangent field @ defined on a neighbourhood of N¥in 7*,and that 7| T;*and @
are invariant under the action of ¥,, W,, respectively. Let ae FT*H @ N} be a linear
function which vanishes on N¥. From (6:10) and lemma 6-3, we have

p(t) (@) = dfoak B Yy (7],)] = d[ (B Y 71,) (B)]

= d[ (P Epse7],) (B)] = ALQ(H)]er,] = vQ(B)ers (6:15)
where « = k#,, d,=d/dt. By (2-5) and proposition 21, 20 = Qod4, whence (recall
=0+0) 2[T', Q] = 2[v, Q]+ [Q0d4, @] = 0.

On N¥*,dA4 = 0, so that, by the rules for Lie derivation,
[Q,QodA4] = Qod(Q4) = 2[v, Q].
Hence, if Fe# 1T * is arbitrary, we have on N
2do(F, v, Q]) = FQ(A) = 2#[A] (F, Q). (6-16)

[The path ¢ — 7, (Q|..,) in T is a Jacobi field over the null geodesic ¢ -0 (parametrized by
e!) and (6:16) is the differential equation which it satisfies.] By lemmas 6:1 and 6-2 (i), for

all 7e 3, #14) (0,0) = 44k, o) = 4 (ko).
Let ve T, M° be vertical in $M° so that k4 v is tangential to 7*H,. Then, since #[4]eF M°is
quadratic, the right-hand side of (6:16) can be written

Vo #[A] = 2[A] (9,0) = (ky ) 4] (617)

where ¢ = Q|.,, v = F. :
Now, [v, Q]| ,€ M°. In fact, if g, € #; is an embedding of

—(m*p) ([0, Q1) = {duif (v, Q) — vl (@) + @t (v)} 5
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where pf = m*u,. The right-hand side vanishes because v is vertical and because

o (@)1, = v, u(r),
where v|NJ* = E 4 v, = v,. Accordingly, the left-hand side of (6:16) can, by lemmas 61,
02 (), be expressed 855 d (1, F, #[, Q1) = 2dof (k1,1 T), (618)

where Ye7,M° is a vertical vector such that tY = [, Q]. With the linear function a of
(6:15) we have, since &, Y is the isomorph of «t Y,

(k4 X) (a) = ax[v, Q] = [v, Q (B) = vQ(B) — Qu(B).
By (6-8) and (6-15), therefore,

p(t) o =vQ(f) = (ks Y) (a) +v1(a), (6:19)
the right-hand side being evaluated at x(Q).;,) = p(t). For each ¢, the component of ;| o®
tangential to N is the isomorph of efu. But this is also easily seen to be the N* component of
p(t). Hence §(t) —vy is tangential to 7*H,. By proposition 3-3, w; = 7¥ w;, so that i[£] dw] = 0
for all £ tangential to N*. A possible a in (6:19) is therefore given by da = i[«,, v] dw]. With
this @, equations (6-16) to (6-19) yield

2doy (kg v, k3 1) = 2d0y (kyev, 5(2) —01) = (k4 v) (4] )

However, all vectors tangent to 7% H, are of the form k. »,and so, by (3:5) 4(£) = (v + 0})]| i,
as required.

Proof of (iii) and (iv). Choose §e M°| xsuch that £(0) = j, #,§. Let g be the constant tangent
field on 77 for which g|, = §. With s = ¢, we have sq = j,%,(sq],,), so, taking / as in (5-4),

E (sq) = KE, 4(sq) + h(s7)
= bokEyx (9) +5°h(9),

where ¢ means g[,, and b;: T*F, — T*PF, is the operation of multiplying the H- and H*-
components of a point by s. As ¢ > —00, s = 0+ and £,(sq) - 0 (observe that the N}
component of £ (sq) is su), which proves (iii).

i h A , . _
Finally, we have BB (sq) = bikE e (@l.,) +5°h(3l,,),

where b; = f1b is the operation of multiplying the - and N}-components of a point
ye T*P, by s, s™!, respectively. Accordingly, ass— 0+, f7 1 E, (sq) -2, where 2(e T¥P) is the
Hj-component of kE, 4 (q|,), plus x. The H}*-component of kE, (q|,) is defined by the values
of akE,(q|,) on the linear functions « which vanish on H, ® N*. By lemma 6-3, for such an
a, £ is a bundle homomorphism for which f| 75" e H,. Hence, if §e T} is the isomorph of g|,,

Ky (110) = P, (al.) = lim s (B, (50)—PE,(0)]
= lim f[s~1 (7).

By lemma 6-6, s > s7'E;!(sq) is a @-orbit for which lims™1E,(s7) = §. Accordingly,

s—>0
akEyy(ql,) = £(7) = dp(ql,) = ax(ql,) = @(4) (a vanishing on H,® NJ) =aj,#,q (since
#,|M° = #,,k|N° = j,) = ag. Since the N¥-components of 2 and ¢ are both g, we have

2= g=1(0).

42-2
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7. Tur CONJUGATE LOCUS NEAR THE ORIGIN

In this section we investigate the behaviour of the exponential map ¢, near an arbitrary
point o in an arbitrary parabolic space of maximal co-rank.

In terms of notations 43, 5-3, theorem 6-1 asserts that ¢, = ¢,. From corollary 4-1 and
proposition 5-3, we therefore have (cf. notation 4-2).

TueoreM 7-1. There is an open set Z, = T¥ such that (i) Z, > N} (i) £\ N¥ contains
no conjugate points of ¢,.

Thus ¢|2,\ NF is a local diffeomorphism. Again, by proposition 4-2¢, 5-3 and
theorem 6-1, there is an open set #, = T* such that (a) #,50, (b) every principal minor
of the Jacobian (¢ (y)/dy;), where y = (y,,...,4,), is strictly positive on y~!(%,\ Ny),
(¢) (dex(y)[dy,) is positive-definite for all yey~! (%, N7). Without loss, assume %, to be
convex.

THEOREM 7-2. ¢,|%,\ N is a diffeomorphism.

Proof. By theorem 7-1 we only have to prove it 1—1. Let z,,z,e%,, where z, =+ z,,
e,(z,) = ¢,(z,), and set (uy,...,u,) =y 1(z,—z,), observing that y is linear. Consider the
function w = y;eleFy~1 (%,). Since wy~!(z,;) = wy~1(z,), we have for some § on the open
segment (y~'z,,¥7!z,), by the mean value theorem,

0 = ;00 (y)[%il =0 = s t; B3/ Wjlos Y= (Y15 -0 9a), (7:1)
giving a contradiction unless fe y~! N*. By proposition 5-3, dei/dy;|, = 0if yf = N and ¢ or
J > m. Hence, (7-1) reduces to u, us de%/dy 4|5 = 0, so that each u, = 0. Thus, 30, z, —z,e N,
whence z,, z,e N, which contradicts the assumption ¢,(z;) = ¢,(z,).

CororLarY 7-1. If ye# \ NF, the geodesic arc I — M, t — ¢,(ly) minimizes J, in the
set of H-paths I — ¢,(#,) which join o to ¢,(y).

This holds because the set of all geodesics ¢ — ¢,(fy), ye#,\ NF forms a Mayer field
covering ¢,(%,\ NF¥).

REemARK. Cartan’s uniqueness proof (1951, p. 358) is false, as is the result stated. Consider
the counter-example R? - R?, z—+ w = €?, z = x+y,/—1. The Jacobian |dw/dz|? = e% = 0,
but e?is not 1 —1.

Our final problem in this section is to get information about the subset of M covered by
¢,(%,). However, in § 8, we require more than this, namely sets covered by ¢,(%,) as o varies
over a compact neighbourhood in M.

DerintTiON 7-1. For U < M, set
NG ={peF (Mx M)|jt,e'n some ye Njf and ¢ (u,u) = 0 for all ue U},
where ¢,: M - M x M, x - (x,u). Also, if ye A7, set
1y = (e A2| AP e 4, for all ue U,
Here, and in the sequel, differentiation in a set V' x V, where V' < M; is understood to be

relative to the first factor, unless indicated otherwise. More explicitly, if 7e 7;, ,,(M x M),

(u, v)

dy (1) € d(yr,) o (p4 7), where p projects M x M to its first factor. Note that, if ge 4,2, then
¢€ﬂ%}> some e ‘/Vl%a in faCt> /ulu = d¢l(u,u)'
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Prorosrrion 7-1. If Uf¢?} is a coordinate neighbourhood of M and ye A3, then 42, + 2.
Proof. We have e y%, where (cf. proposition 5-1)

P(,0) = w(0) 0=y (0) 00 (0" =0w) —L(0)).
Here, = ;. A8, dp; = 2p;. AL, gy, pijeF .
Prorosrrion 7-2. There is an open set # = T*, containing the zero section, such that
e|m~1x n (B\ N*) is a diffeomorphism for all xe M.

Proof. Choose a coordinate neighbourhood U"{{?} of x, then choose U, U’ (open) with
xe U = U’ = U" such that

1. There exists a basis (41, ..., u") for N;.

2. dl'a...ad{mapmt1a... A vanishes nowhere in U’.

3. For some £%e (p1)2, the functions &| U x U, where £*(u,v) = {*(u) —{*(v),a = 1,...,m
are such that £, are admissible, special coordinate functions at » for all ve U. (This is
‘possible, since the subset of U’ x U’ on which d!'a... s d¢ + 0 contains the diagonal.)

Without loss, assume that £’e # (M x M) ; we can then deﬁne maps ¢, ¥ by
T* 25 Mx M 2 R

y > (ey,my), (u,v) — (E'(u, V), enr E2(u, ).

For any oe M, ¢|T¥ is the map y — (¢,(y),0) and £it, == x¥'—the x? being as in notation 5-3.
The forms d¢*, u* (=d¢¢ on the diagonal) naturally induce vertical vector fields # on 71U,
constant on each fibre. Hence, the function y — 7/ (£2)|, is equal to the Jacobian element
el d%y;, where 0 = my, calculated at y~(y). If 7is a C, vertical, non-null vector field on 71U,
constant on each fibre, and if 7 is a principal minor of 7/ (i) containing 7(=0, 1, ..., n—m)
of the last n—m rows, the first non-vanishing derivative (the 2rth) of Z in the dlI‘CCtIOH T,
calculated on the zero section over U, is positive, by proposition 4-2a, theorem 6-1, corollary
5-2. Since also £ vanishes on N* n 71U, there is an open set W < #~1U such that
(@) W n T, for each ue U, is theinterior of a sphere, centre 0|, relative to some Riemannian
metric on M, (b) 7270 4> 0 on W for all principal minors % and all non-null 7. Accordingly,
the Z are positive-definite on W\ N*, and the ¢, are positive-definite on W N*, The
result therefore follows from theorem 7-2 and the fact the set of U’s cover M.

NoraTion 7-1. Let U, (open, with compact U,) be such that U, = U, where U, U"are sets
for which properties 1, 2, 3 (above) hold—so giving C® g2, £, {/ on U. Assume without loss
that (dé|,, ), ..., d€™|,,,,) are orthogonal for each ve U. [In fact, one can replace the (%) by
(%), using the Schmidt orthogonalization process:

E(u,0) = 3 c5(v) £ (u,0),
=1
where, for the moment, the symbol ¢(v) stands for quantities given by
63(v) ﬁgl c§(0)af?(v) = 027, af7(v) = a(d€| > A7 |o)-]

Define 5i: U - T* by 7i], — d¢ s> (M5 +++5 71,,) being the dual basis field in T over U, and
define 7', 7; in each fibre as in notation 5-3. Define X, X’, ¥ as follows.
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~

(4
T* MxM~_ ¥
x 7 N ,
X\A ¢ %
P : P
Xy st 0) =47 X (W1 oes ¥ ) = 950", (i) = (&, ..., um).

The diagram is wrong in that the domain of ¥ is not P but 7"-1U, n": P - M. The maps
¢, ¢ are as in propositions 5-2, 7-2, respectively. Next, define

e=YeX|7;, ¢ =WeX, V=XV a"WnelUnR), nc=c¢, uic =¢",

7. R" - R being the ith projection. Obviously, ¢ is C*, and by proposition 5-4, sois ¢’. We
define mg, m,, my: R* - R by

my(Uys - Uy) = gl oy Mo(tys ey hy) i}ﬂﬂ%, my(u) = J/[my (u) +my(u)],
and C, I', (v > 0) by
C, = {ue R"|/my(u) <vm,(u) <v3} (v>0),
L, = {ue R*|mo(u) <v} (v>0), [, ={(0,...,0)},
[ = {ue R*"|my(u) < v, my(u) >0} (v>0).

Lemma 7-1. Let f: T, - R" be a homeomorphism into, for which f(0) = 0, 0 = (0, ..., 0),
and m, f(x) = Kmg(x) for all xe T',, where K > 0. Then f(T')) > I',.

Proof. For any ye dI'y,, define ¢, = inf{te R* |yt ¢f(I)}. Then yt,e ¢f (') = (L), so that,
ifx = f~1(yt,), we have my(x) = v. Hence, by hypothesis, my(yt,) = ¢, Kv > Kv, giving ¢, > 1.
For any e I'y,, we have 5 = ty, where te [0, 1), ye dl',, whence ye f(I)).

Remark. If fis a diffeomorphism into, one can, by the mean value theorem, take

K — inf gl [}é ¢ 3,(mif)| g,.]%

where the ‘inf’ is over (§,,...,§,,{)e (I)»x '}, {= (..., ¢,). K will be positive if v is
sufficiently small.

TueEOREM 7-3. With notation 7-1 there exists £ > 0 such that Wé(nlxn (Z\N*)) > C,
for all xe U,
Proof. We first prove that there are numbers £, /, > 0 for which

¢ (I, x{v}) 2 C, for all vel, (7-3)
where [, — 0 as k£ — 0. The theorem will then be deduced from proposition 5-3. For each
oe M, by (413), (4-14), ¢)|H¥ = a,: Hf — H,, and so, if R™ denotes {ue R*|m,(u) = 0},
¢ (u,v) = u for all (u,v)e R"x U. Set & = {(u,v) e R™ x Uy|m,(u) = 1}. Since #° is compact
and det d¢"i(u,v) [du; = 0 for (u,v) near &, if £ 1s sufficiently small there is a neighbourhood
& of #0in R" x U with the properties

i) €(F n (R x{})) 2 #; = {we R |my(w) —1| < k,my(w) < k$} forall veU,,
(il) 0 <m,(u) <2 and my(u) < v} for all (u,v)eS, where v, (>0) can be so chosen that

vy —> 0 as k — 0. [Hint. There is an (with & compact) such that, for each v, ~ (R"x {1})
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is a union of open balls of radius v, with centres on #°. Apply lemma 7-1 and the remark to
each ball, using the compactness of &] By the homogeneity of (4:13), (4-14) in y, of degrees
1, 2, respectively, it follows that, if

U= (Upyereythy)y U= (FlhyyeeylllyyyUpiis e u), teR,
then my € (w,v) = Pmye’(u,0), mye’ (w,0) = t*my€’(u,0).
Hence, a simple argument using property (i) shows that, if
F={(u,v)e Rnx U| 3t >k 's.t. (u,v) e},
then ¢'(Zn (R* x {v})) = C, for all ve U,. However, by (ii), #< I} x U, where
[} = 2k2 402,

Since [, -> 0 as £ — 0 the result follows.

For de (0, 1) sufficiently small, I, x U = ¥"(notation 7-1), and, with this 4, e(u, v) = ¢,(u)
for all (u,v)e I'y; x U—e¢, being as in notation 5-3. The maps ¢, ¢’ being C*, prop 5-3 implies
that

my (e(u,v) —€' (u,v)) < K|ult, my(e(u,v) —e' (u,v)) < K|ulb, (7-4)

for all (u,v)eI'y; x U, and some K > 0, where |u| = /m, (u). Also, setting
L g=n d=g= =
we have from proposition 5-3, ‘ ‘ /
¢t 06H(ty, ..., Uy, ) [Ou; = 06" (B, ..., 5 0)[9B; 4 O([ul), (7-5)

where (£, ...,4,) denotes (|u|™uy, ..., 4| tyy tyyiys - %,), the O-symbol indicating
uniform bounds on I'y; x U,. For any fe [0, 1), define

Wy(u) = {we Rl (1w—u) 4 my (1) my(o—u) < Omy(w)},
Z(0,8) = {(@", ey 0", &y ooy () € (W) X Rluc T, Gt 4 B =1,

)"
h(0,8) = inf 3 ®i(w', &,0), ©(u, {,) E[g ul,....u,v)/3u.:],.
x U,.

where the ‘inf” is for all (wl, ..., w", {,v)e Z(6, §) x By (7-5) and because det (de"¢/du; ) is
non-zero on #°, a § > 0 exists for which £(0, 8) > 0. The map 0 —> (6, ) being continuous
near § = 0, there is a fe (0,4) such that £(6,0) > 0. Let § now denote this value. We have
0<f<d<l. , ,
For any u+ Aue W,(u), where (u,v)e 'y x U,, we write z = ¢(u, v), z-+ Az = ¢(u+ Au, v). By
the mean value theorem, if A'u, = Au,, A'u; = |u] AuA,
2
j?m (A2)+ma(A2) = 2% | 3| A ]

/H%MMMAwHWmmm,

where y;e W,(u) x {v}. This inequality holding for all u+ Aue W,(u), we have from lemma 7-1
that ¢,(W,(«v)) = Q,(u), where : : :

Q) = {z+Az = Rrlz = ¢,(u), [u]2my(A2) +my(A2) < OR(6, ) [u]*,
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- Choose £, [, in (7-3) such that
I, < min [(6k(0,0)/2K)?, 5]. (7-6)

We now show that ¢(I'y x {v}) = C, for all ve U,. Let we G, ve Uy, and define u(eI'y) by
€' (u,v) = w. If u+ Aue Wy(u), we have

Jma(u+Au) < Jmy (u) +Jmy (Au) < (140) Jmy (u) < 29,

Jmo(u+Au) < Jmy(u) 40 < 20,

Ny (utBu) = Jmy(u) —Jm(Au) = (1=0) Jmy(u) > 0,
whence W,(u) = I';;. On the other hand, writing Aw = ¢'(u, v) —¢(u, v), we obtain from (7-5)
and (7-6) |2y (Aw) -+ my(Aw) < 2K |u]6 < (0, 5) |ul4,

whence w = ¢(u, v) +Awe Q, (1) < ¢(W,(u) x {}) < ¢(I'; X Uj). This completes the proof.
The following result is more easily proved than the last, but it will not be required.

ProvrosiTioN 7-3. There exists £ > 0 such that Wé(n~1xn (#\ N*)) = C, for all xe U,

8. APPROXIMATION TO HORIZONTAL ARCS BY GEODESIC POLYGONS
DEeriNiTION 8:1. An H-arc f: I — M will be called C” if, for all ¢e A2
) S

lim (7—8)¢(f(1), /()
exists, the limit being approached uniformly with respect to te 1.

- Prorosition 8:1. If fis a C3 H-arc, fis C".

Proof. Follows trivially from definition 8-1 and the mean value theorem.

ProposiTION 8:2. At each point of M thereis a chart U{{?} for which the map ¢ of notation
7-1 has the property 6(y,7) =y (8:1)
for all (y,v)e (R™n I'5) x U, where § > 0.

Proof. We start with a coordinate neighbourhood U{{’} and functions ¥, ¢, etc., as in
notation 7-1. For each v € U, by the remark (¢) preceding theorem 7-2, det %%(0,v)/dy, =+ 0.
Hence, there are C* maps x, sending a neighbourhood of the diagonal of U X U into R,
given by Ex(u,v) = ed(xl(u, V) enes X, (4,0),0,...,0,0).

Define C* %,, 4, ..., %, by

xy (u,v) = EX(u,v) — (%, (u, ), ...y x, (4, 0), 0, ..., 0,0). (8-2)
From the second sentence following (7-3), |
¢'(y,v) =y forall yeR™ vel, (8-3)

whence, by proposition 5-3, de*(0,v)/dy, = *£. Hence,
' oe* ‘
d€¥|(y, 0y = %’a‘y; (0,0) . dig|(y, ) = %y |05 (8-4)
and, by (8-:2) and (8-4), ‘ ‘
der
dxh'(v,v) = dgli(v.v)-zw (03 U) 'dxﬂ'(v,v) = dg/\!(v.v)' (8.5)
7%
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Thus, dx;4...adx,|,, #0, so U has a cover by neighbourhoods U’ for which U,
(recall ¢,: u — (u,v)) is a chart for each ve U". By (7-4), (8-2) and (8-3)

(W (1,0) — X (1,0) = O('¥ (u,0) | (8+6)

for all (u,v) e U'x U’, where X(u,v) = (x,(4,0), ..., ,(u,v)). Since &%, e u}, one deduces
from (8:6) and definition 5-3 that «, ¢, ‘u}, whence the x;, are special coordinates at v.
We now set & = x;¢X and check that the & satisfy (8:1) by considering

(€' (y,v), ..., €"(y,v), 0, ...,0,0), ye R™

THEOREM 8:1. If f: I - M is a C" arc,

(1) there is an ¢>> 0, independent of ¢e 7, such that f|/n (t—e,t+¢) = efmft, where f,is
an open C! arc in T, M for which /() = 0|,,. i

(2) £,(t) is non-null, and, for all A e FT*, (1—2)"1 (AMfi(1) = Af,(t)) = 1,(¢) 0 A uniformly in
tas7—t—>0. .

(3) The map g,: I - T*, sending ¢ to the isomorph of /() in T, is continuous.

(4) f= mg, where g is a @-orbit, implies g = ¢,.

Proof. Set F = fx f: Ix I — M. In proving (1), (2) and (3) we assume without loss that
the parameter ¢ of fis arc length. For, otherwise, if s(¢) denotes arc length, s is C! and, by
definition 81,

lim {s(1) —s(£)}3@F (7,t) = {s'(¢)} 3 lim (1—¢) 3 §F (7, 1),

7> T>

the limit being uniform in ¢. Statements (1), (2) and (3) hold similarly on changing from ¢

to s and vice versa. We use notations 7-1, assuming without loss that f(I) = U,, where U{({}

is a coordinate neighbourhood as in proposition 8-2. By definition 8:1, (1—¢)~3&AF (7, 1) is

bounded for all (7,¢)e Ix I, and A = m-1,...,n. With d, as in definition 25,
|7—¢|"1d,F(r,t) > 1

uniformly as {—7 — 0 (use the exponential map 7"'— M x M defined by g, diffeomorphic
near the zero section). Also,

dg(vb 09)% = O(m, ¥ (v}, 0y) +my ¥ (v),0,)) for (v, vy) € Uy x U,

so that, from the last two sentences, given ¢ (sufficiently small, > 0), there exist positive
constants ki, k,, k5 such that |[7—¢| < § implies

[my WF (1,0) 1} < by (1—8)2 < kof{d, F(r, 1) 2 < ky[m, WF(1,8) +m, PF(1,0)].  (8-7)

Hence, there 1s a positive ¢ such that 0 < |[7—¢| < ¢ implies WF(r,{)e C,. Statement (1)
therefore follows from proposition 7-2 and theorem 7-3, except that we still have to show
that (a) f,(r) — 0 as 7>, (b) /,(2) exists, (o)ft( 7) tends to a limit (necessarﬂyf,( )) as 7>t
We next prove that s, = O(s;) uniformly in ¢ as 7 — ¢, where s; means

JmAXVf(T), i=1,2,#: Rix M->Rn.

For ye R* x M, we put |y| = /m, #(y), while, for ye T*, |y| = ./a(y,y) as before, so that
ly| = |X~1(y)|. From definitions 25, 8-1 and the second inequality of (8-7),

{d,F(1,t)}3EF(1,t) = O(1) forall (r,t)elIxL.

43 Vor. 262. A.
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Now, | f;()| = s, is the length of a geodesic arc joining f(t) to f(7), so that d, F(7,t) < ;.
Hence, | my W (r, 1) = O(s5). (88)

On the other hand, by proposition 53,

ea(y, U) = bdﬁ(Y’ v)yﬂ+ 0(}y|2), e’u(y, 1)) = boc/)’(Y, l)) Yps \\

A5 0) = (Y, 0) 15, + Oy ), €4(9,0) = A (X,0) 59,
where ¥ = (41, s %)> ¥ = (Yms1s --» ¥,) and the O notation implies uniform bounds on 77
From (4:14) and notation 7-1 one computes

MY (Y,0) = Py, + 0 (my(y)), (8:10)
where ¢)"#7y,y, is a €, non-zero scalar multiple of a(Ap'|, 0 ys, Ay |,04), yn = Y17, The
clements of the matrix ¢ = (|y|~%¢)"#7y,y,) and of its inverse (which exists when |y| = 0) are
0(1) on ¥\ X-1(N*). Hence, contracting (8-10) with |y|~2%,y, and operating on it with
~1, usi 8:9 _ ' -

o wing (89), ya = (e (5:0)- Iyl 2+ O(mal9)),
whence, by (8:9), there exist constants K;, K, such that

| lya— (e (¥, 0) |yl 72 < Kily| 4 Ky my(y)
for all (y,v)e 7\ X~1(N*). Hence, by an easy calculation, (4) (y,v)e¥; mye(y,v) = O(|y|%)
implies (B) my(y) = O(m,(y)). By (8:1) and the identity ef(t,ﬁ(r) = f(r) for all |{—7| < ¢, one
sees that X-1f,(7) satisfies (4), whence s, = O(s;). It follows that fi(1) =0 as 71— ¢, and that,
if £,(t) exists, it is non-null.

We now prove the second statement of (2), that (7—¢)~! (A \f,(7) —A£(¢)) tends to a uniform
limit as 7 — ¢t. We set. (0,1, 8)s ey 0, (1, 0), F(£)) = X-17(7)

and observe that, since AXeZ (R*x U), the result is proved if we show that (r—¢)~10;(r, )
tends to a uniform limit as 7 — £, each . By (8:1), each term in the Taylor expansion (with
remainder) of €A(y,, ..., 4,, v) about y = 0 contains some y,. Hence, by (8:9) and (8-10)

e(y,v) =y,+0(Zy?), e (y,v) ="My, yzy,+O0([2y]?),

and so, s; denoting ./ (s}+s3) = /203, 0; = 0;(7, £),

e X1, (1) = E2F (1,t) = 0,4+ 0(s3), (8-11)

e/‘X“lft(T) = EAF(1,1) = c}(‘;@’o, 040,+ 0(s%). (8-12)
From corollary 7-1, the geodesic arc s — ef(t)(sft(f)) of length s, which joins f(¢) to f(7)
is shorter than |7—¢|, so that |[7—¢|~'s; = O(1). Accordingly, since

sp=0(sy), [7—t|7's3=0(1).

As 7->t, (1—t) "1 §2F (7,t) tends uniformly to z*(f) = f(t) 0 (E%(,) and (1—1)"3EMF (,¢) tends
to a uniform limit z*(¢), by definition 8-1. Multiplying (8-11) and (8-12) by (r—#)~1, (1—£)7°
respectively, and letting 7 — ¢, we find that (1—)~1 0;(7, £) — ;(¢) uniformly, where

2t = p(ta), 2ME) = 7,0 (0 1, 0). (813)
This completes the proof of (2) and (). Now, z*(¢) is continuous by construction, and so are

z%(t), c)vhv. It follows that the ,(f) are continuous, proving (3).

(8:9)

>
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For the proof of (¢) it has to be shown that, for fixed ¢, do;(7,¢)/dr tends to a limit as 7 — ¢.

For this, the following will suffice. We have
GEF (1,)[0r = 2.(06] ;) (915 -5 Y S (£)) - 00 T,
J

where y; = 0;(7,t). The J/dy; can be expanded about y = 0 by Taylor’s formula, and their
orders of magnitude obtained from (8-9). These, together with the fact that d§iF(,t)/dr,
(1—1t)"2 G F(1,8) /01, (1—1)"1oy(7,t) all tend to finite limits as 7 — ¢, lead to the required
conclusion.

Finally, if f = 7y, where y is a ®-orbit, we have by corollary 2-3

S(r)= efmfz(T) = ef(t){(T_t) y(®)}

provided that |7—¢| < ¢. Hence, (1) = (1—t) y(¢), so that ft(t) is the isomorph of y(¢).
Accordingly, ¢,(¢) = y(t), which proves (4).

Theorem 8:1 enables one to approximate to a C" H-arc f by a finite geodesic polygon
which is homotopic to f by a well-known homotopy of Morse theory. The paths of this
homotopy decrease in length as fis deformed into y. We end with some simple applications
of theorem 8-1.

DEFINITION 8-2. A co-path in M is a piecewise C® map p: R — T* such that 7p is piecewise
C'and aop(t) = (mp) 4 od/d¢|, for each te R.

In more classical language, a co-path is an H-path with a set of Lagrange multipliers,
relative to some chart. From theorem 8-1 we can assert

TueorEM 8:2. The parabolic structure 2 (M, H, a) determines a canonical lift (a co-path
over f) q;: I - T* for any C" arcfin M. In any chart this is equivalent to giving a set of
Lagrange multipliers for /. With these multipliers, fsatisfies the multiplier rule iffis geodesic.

ProrosiTION 8-3. Let f: I — T* be a co-path for which 7fis C!, and let 4: I — T™* be a C!
path for which 74 = nf. There is an operation of covariant differentiation o, for f which takes 4
into a C° path 0,[4]: I — T such that 7'0,[h] = nf,n’: T — M.

Proof. Let U{x'} be a chart in M containing im 7f. For each te I,

&) =f(t).da?,  h(t) = () .dx?
where f;, 4, are C°, C! functions of ¢, respectively. Define d,[%] for U{x‘} by

0,[A] () odx’= g—t[d(ﬁ(t), )]+ IR £5(0) A (2),

2[Vhi = ik, gl —a¥, a*—at*, a, a¥ = a(dx?,dx’),

where da¥ = a¥,,.dx*. One checks in the usual way that d,[%] is independent of the choice
of the chart U{xi}. The operation J, extends to C* paths ~: R — T®", where T®" is a bundle
over M of tensors of type (0, 7), turning them into paths in 7' over 7f. However, d,does not
apparently extend to covariant or mixed tensors.

DEFINITION 8-3. A Clpath &: I — T* over nf will be called parallel on fif ;[ k] maps I into

the zero section of 7.
43-2
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DeriniTION 8:4. If 0, 7€ H,, call o, 7 involutive if du(o, 7) = 0 forall ye #;. Forany de T, set
Q.(0) = {Fe T¥|a(d), a(7) are involutive}.
Observe that dim Q,(0) =n—m, dimao Q, = n—2mif crk H = m.

ProrosiTiON 8-4. If i: R — T* is parallel on f, f(¢), &(t) are involutive for each ¢. Con-
versely, given a co-path fsuch that 7fis C% and given ge Q,(f(0)), there is a unique C! path
h: R — T* such that 4 is parallel on fand £(0) = ¢, provided (as always) that crk = m.

Proof. The first statement is established by proving that 20:[%] (¢) o u = du(af (t), ak(¢)) for
each teR and ue 4. The second statement is proved by a tedious piece of elementary
analysis, which will be omitted.

Finally, we remark that, in the usual way, one can show that, if 4, &, are parallel on f,
then a(h,(¢), hy(t)) is independent of ¢, i.e. parallel propagation preserves scalar products.
Call a co-path which is parallel on itself an autoparallel. Geodesics are autoparallels, but not
all autoparallels are geodesics. One can show that autoparallels in M are projections into
M of orbits in 7* of vector fields ®’ satisfying

i[0'] do+2dL = w4,

where ye A" is arbitrary. One can also show that, if a: M — T* is a 1-form such that the
orbits of a(«) are autoparallels, then these orbits are geodesics if and only if da = 0.

APPENDIX 1

It is of interest to summarize the properties of the simplest case of a parabolic structure,
namely #(H,, N,, J, a,} where (§4) H,, a, are the Euclidean plane and its metric, and N, = R.
For ue N, a,(du) is an infinitesimal rotation of H, about the origin. With respect to a basis
(e,€,,€;) in R* = H ® N,, the tensors 4, ¥ have components

ai = 0 1 % s Yt = (xg, —xp,1).
—Xy Xy X743

If (y,,,, y5) are co-ordinates in P} relative to the dual basis (e!, 2, e3), the exponential map,
obtained by integrating (2-4) using the above values for 4, is given by

25¢,(1,€") = {yy sin 23—y, (1 — cos 2y5)} e,

+{y, (1 —cos 2¢5) +y,sin 2y} €,
+ (y4y3) {1 — (295) "' sin 2y} e, (A1)
The set of horizontal paths in P which join the origin to a fixed point z have for their pro-
jections into H paths joining 0 to m, z and enclosing area }m, z with the straight line 0m, z.
In particular, the projections of geodesics, having minimal length for given area, are circles.
From theorem 4-1, ¢, restricted to the set {y;eie P¥|yi+y% > 0, |y;| < 2[I}is 1—1; from
(A 1) one checks that ¢, is diffeomorphic on this set. One finds also from (A 1) that a parabolic
sphere—the image under ¢, of the set {y,e’|y}+y3 = const.} is a surface of revolution which
cuts the (e,,e;)-plane as shown in figure 1. The shaded region exhibits the set covered by
minimizing geodesics of fixed length issuing from O. This set is homeomorphic to a 3-ball
(cf. corollary 2-4). The points of the parabolic sphere not bounding the shaded region are
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joined to the origin by non-minimizing geodesics. The latter project down onto circles in
H, covered more than once. The points represented by cusps and self-intersections are all
images under ¢, of conjugate points.

€3

€

Ficure 1

APPENDIX 2

For a Pfaflian system to be of maximal co-rank near xe M, it is necessary and sufficient
that, for constants A,,, , ..., 4, not all zero,

QW) =w Iaoapia (A, dp)” £0, o= 1im, (A2)

where gm*1, ..., 4" is a basis for 4. In particular, m must be even. ®(1) is a homogeneous
polynomial in the A’s of degree ¢ which, up to linear transformations, is an invariant
of the Pfaffian system. For @ to be non-zero for all non-zero A, it must have even degree
when n—m > 1, so that m = 0 (mod 4). For any fe H, £ 40, the vectors &, a(i[£] dw?),
v =m-+1,...,nare linearly independent, whence n— m—l— 1 < m,2m > n+1. Not 1mp0551ble
values of m, n for n < 10 are as follows:

n 3 5 6 7 8 9 10
m 2 4 4 4,6 4 4,8 4,8

Let $§m~! denote the unit sphere {{¢ H| |{| = 1}; then (J,,.4, ..., J,) where J, = aodw,
generates a field of (n—m)-frames on $”~1. In particular if the J’s are such that J2 = —1,
S J,+J,J, = 0, they generate anti-commuting complex structures on A, and the corre-
sponding frames on $”~!are orthonormal. By work of Eckmann (cf. Milnor 1963, §24) there
are & anti-commuting complex structures on A, where dim H, = r0,,r = 1,2, ..., and

0,=2, O,=0,=4, 0,=0,=0,=0,=8, 0,=16, 0,=160, , (k>8).
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Each of these gives rise to a Pfaffian system of maximal co-rank on H @ N,, where
dim N, = k. For example, on R” = R*@® R? we have

W = x1dx?—x3 dat+dwd,
48 = x dad+ 2% dwt+ dud,
u = xtdat—x?dxd 4 da’.

In this case, the endomorphisms 1, aody®, aodus, aody” of H, (~ R*) are a basis for
quaternion algebra.
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